
FAMU-FSU College of Engineering

Department of Electrical and Computer Engineering

Final Report - Spring 2016

Synthetic Aperture Radar Imager

ECE Design Team 11

Members:

Olivier Cedric Barbier (ECE) oliver.barbier

Jordan Bolduc (ECE) jpb12c

Scott Nicewonger (ECE) swn10

Julian Rodriguez (ME) jar12g

Kegan Stack (ME) kts11d

Date:

April 11, 2016

Synthetic Aperture Radar ECE Team 11 Spring 2016

Table of Contents

Executive Summary .. 1

ACKNOWLEDGMENTS .. 2

I. Introduction ... 2

1.1 Problem & Users .. 2

1.2 Assumptions & Limitations ... 2

1.3 End Product .. 2

II. System Design .. 3

2.1 System-Level Design Overview... 3

2.2 System Requirements ... 6

III. Design of Major Components .. 7

3.1 Structure designs .. 7

3.1.1 Design S-1: 80/20 structure .. 7

3.1.2 Design s-2: Custom aluminum structure... 9

3.1.3 S-1, Version 2 ... 10

3.1.4 S-1, Version 3 ... 10

3.1.5 S-1, Version 4 ... 11

3.1.6 S-1,Version5 ... 12

3.2 Horn Holders .. 14

3.2.1 Legacy Design .. 14

3.2.2 Horn Holder Concept H-1 ... 16

3.2.3 Horn Holder Concept H-1 Version2 ... 17

3.3 Component Housing ... 18

3.3.1 Legacy Component Housing... 18

Synthetic Aperture Radar ECE Team 11 Spring 2016

3.3.2 Component Housing C-1 .. 19

3.4 Component Housing Thermal Analysis ... 23

3.5 Transmission Subsystem .. 25

3.5.1 Purpose .. 25

3.5.2 Components .. 25

3.6 Reference (LO) Subsystem .. 26

3.6.1 Purpose .. 26

3.6.2 Components .. 26

3.7 Receive Subsystem ... 27

3.7.1 Purpose .. 27

3.7.2 Components .. 27

3.8 System Control (FPGA) ... 28

3.8.1 Purpose .. 28

3.8.2 Requirements .. 29

1. Method .. 30

3.8.3 Challenges ... 33

3.8.4 Results ... 35

3.9 Display ... 37

3.9.1 Purpose .. 37

3.9.2 Requirements .. 37

3.9.3 Method .. 37

3.9.4 Challenges ... 37

3.9.5 Results ... 38

3.10 Signal Processing (MATLAB) ... 38

3.10.1 Purpose .. 38

Synthetic Aperture Radar ECE Team 11 Spring 2016

3.10.2 Requirements .. 39

3.10.3 Method .. 39

3.10.4 Challenges ... 43

3.10.5 Results ... 44

3.11 Signal Processing (VHDL) ... 46

3.11.1 Purpose .. 46

3.11.2 Requirements .. 46

3.11.3 Method .. 46

3.11.4 Challenges ... 47

3.11.5 Results ... 47

IV. Test Plan... 48

4.1 Test Phases ... 48

4.1.1 Phase 1: Legacy Verification Testing ... 48

4.1.2 Phase 2: Re-design Iterative Testing... 48

4.1.3 Phase 3: Migration Testing ... 50

4.2 RF Range Test Results ... 50

4.2.1 Purpose .. 50

4.2.2 Method .. 51

4.2.3 Results ... 51

4.2.4 Discussion ... 53

V. Project Schedule.. 59

VI. Budget .. 59

VII. Conclusion ... 65

7.1 Accomplishments ... 65

7.2 Proposed Improvements ... 66

Synthetic Aperture Radar ECE Team 11 Spring 2016

7.3 Project Future ... 67

VIII. Team ... 67

Appendix A: Test Plan Documentation .. A-1

Appendix B: VHDL Code Modules ... B-1

Appendix C: MATLAB Code Modules .. C-1

Synthetic Aperture Radar ECE Team 11 Spring 2016

1

Executive Summary

Problem Statement

 Design and implement a proof of concept prototype of a static, stationary radar imager that exploits

Synthetic Aperture Radar (SAR) technology.

SELECTED METHOD

 Two perpendicularly aligned linear arrays provide transmit to receive displacement to produce

phase fronts which correspond to reflection angles of arrival.

KEY FEATURES

 The SAR uses 10GHz pulsed RF to image a 40inch x 40 inch scene at a distance of 20 feet.

EVALUATION METHOD

 Evaluation is based on the ability to detect an RF corner reflector in the downrange scene.

IMPORTANT RESULTS

 The SAR successfully detected a corner reflector at boresight and generated a phase slope

difference as the corner reflector was moved radially about boresight of the array.

Synthetic Aperture Radar ECE Team 11 Spring 2016

2

ACKNOWLEDGMENTS

I. Introduction

1.1 Problem & Users

In partnership with the FAMU/FSU College of Engineering and Northrop Grumman, the objective of

the Synthetic Aperture Radar (SAR) Imager Project is to develop a low-cost weapon detection system that

provides suitable imagery resolution for physical security and military force protection applications.

Current detection technologies commonly employed in the security industry such as metal detectors,

Advanced Imaging Technology (AIT) scanners, and x-ray scanners can be expensive, obtrusive, and

require the subject to be inside the apparatus. An imager based on SAR technology, composed primarily

of commercial-off-the-shelf (COTS) components, can be implemented at a lower cost than many industry-

standard scanners; it may be placed behind a barrier, out of view from subjects; and most importantly, it

can identify concealed metal objects from a distance.

In environments with multi-layered physical security protocols, the SAR imager’s superior range

could alert security professionals to potential threats before they reach an access control point, or before

they progress further into a secure area, depending in which security layer the SAR is deployed. Some

environments may be vulnerable to physical attack, but conventional AIT body scanners are too obtrusive

or inefficient. An amusement park, for instance, might have high-level security needs, but their customers

would not tolerate stepping into a full-body scanner.

Furthermore, random screening protocols have been widely criticized for being culturally or racially

biased in practice. With SAR capability, guests can be discreetly imaged while queuing, and persons of

interest can be identified for additional screening based on the presence of metal signatures rather than the

caprice of a human screener.

1.2 Assumptions & Limitations

The scope of this project is limited to demonstration of the underlying theory of operation. A radar

reflector is placed at known range and angle from boresight, rather than tracking a weapon on a person in

the final operational environment.

1.3 End Product

The final design iteration of Spring 2016 produced a greatly improved implementation of a legacy

SAR design. The product is capable of detecting the presence of a corner reflector in the downrange scene.

Synthetic Aperture Radar ECE Team 11 Spring 2016

3

Manual scanning mode is fully implemented in the FPGA, while real-time automatic scanning logic has

been coded but not fully realized. Signal processing backbone has been coded and prototyped in MATLAB

and is ready for field testing.

II. System Design

2.1 System-Level Design Overview

Figure-1 shows the top-down block diagram of the SAR system. From the voltage controlled oscillator

(VCO) that generates the 5 GHz intermediate frequency (IF) analog signal, the signal travels through three

component chains: the Transmission Path, the Reference or Local Oscillator (LO) Path, and the Receive

Path. Movement between these paths is governed by the Xilinx Nexys-3 FPGA, which provides timing

and control voltages to the switches.

Three high-frequency, solid-state switches are used to set the system into the appropriate state. These are

the Single Pole Double Throw (SPDT), Single Pole Four Throw (SP4T), and Single Pole 16 Throw

(SP16T) switches. The state of the SPDT switch determines whether the system is in Transmit Mode or

Receive Mode. The SP4T and SP16T switches determine which transmit antennas and which receive

antennas are active, respectively.

Figure-1: SAR Top-down block diagram

VCO
Super Ultra
Wideband
Amplifier

FPGA Board

S
P
2
T

Fixed
Attenuator

x2 Frequency
Multiplier

Variable
Attenuator

Band Pass
Filter

Power
Amplifier

S
P
4
T

A/D (PMODs)

S
P

16
T

4 Transmit Antennas

16 Receive Antennas

Fixed
Attenuator

x2 Frequency
Multipier

Control

Control
Control

Band Pass
Filter

LNA1

Variable
Attenuator

LNA2

Fixed Attenuator

IQ
Demodulator

LO

RF

I

I’

Q

Q’

Control PC

VGA Display

Ultra Wide BW Amp

Ultra Wide
BW Amp

Fixed
Atten.

Synthetic Aperture Radar ECE Team 11 Spring 2016

4

The following sections will elaborate in detail on the SAR subsystems, their functions, and how their

functions are accomplished, but at the simplest level, the SAR must transmit a known signal, capture its

reflection, compare the reflection to the signal that was sent, and process the data. Figure-2 shows a

simple process diagram for a single transmit pulse.

Figure-2: Process diagram for a single pulse

Signal Generation is shown as a block outside the cycle since the VCO is always generating the phase-

locked analog signal. In Transmission Mode, the signal is amplified and pulsed to the physical target

downrange. In Receive Mode, the signal generated by the VCO is used as a reference to compare the phase

of the reflected signal. The SPDT switch reroutes the signal to the LO port of the IQ Demodulator. The

IQ Demodulator compares the phase difference between the LO signal and the received signal reflected

from the target, and outputs the In-phase and Quadrature components as voltages. These I and Q analog

voltages are digitized, encoded, and stored for processing with the data from other pulses.

Synthetic Aperture Radar ECE Team 11 Spring 2016

5

The sequence described is repeated for each transmitter/receiver antenna pair along the linear array.

The design uses 16 transmitter/receiver pairs along each axis to generate a phase slope about the 16 phase

centers created. Each phase center maps to a region of the downrange scene and corresponds to a unique,

complex basis function. In signal processing, a Discrete Fourier Transform algorithm convolves the

received data with the basis functions to associate energy (amplitude) with angle of arrival (since each

phase center corresponds to an angle of arrival).

Figure-3: Linear phase slope

Synthetic Aperture Radar ECE Team 11 Spring 2016

6

2.2 System Requirements

● REQF-001: Frequency Range

● The frequency range of the imager should be within FAMU-FSU College of Engineering

policies. The SAR will emit 10 GHz X-band energy at low power levels.

● REQF-002: Operating Range

● The range from the imager to the target needs to be 20 feet.

● REQF-003: Extent of the Scene

● The area that must be imaged should be the width of a normal sized person.

● REQF-004: Cross Range Resolution

● The cross range resolution must be enough to discern whether there is a possible threat by

showing there is large scatter on a specific portion of the body, but it need not be sharp

enough to outline the particular type of weapon. The designed pixels size to divide the

scene into would be 2.5 inches x 2.5 inches.

● REQF-005: Down Range Resolution

● Down range resolution will be a future capability. For ethical reasons, the down range

resolution should not be so high as to be capable of producing a high-resolution image of

the human body.

● REQF-006: Pulse Width

● The pulse width is nominally 20 ns since target (20 feet away) round trip is 40nS away as

pulse travels 1nS per foot leaving 20nS for system to switch to receive mode at the end of

the transmit pulse to detect the reflected pulse .

● REQF-007: Voltage Controlled Oscillator

● The VCO used for converting the signal must be functional at 5 GHz.

● REQN-001: FCC Rules and Regulations

● The Radio Frequency (RF) emitted from the SAR imager must be within ANSI/IEEE

C95.1-1992 guidelines and FCC Rules and Regulations 47 C.F.R. 1.1307(b), 1.1310,

2.1091, 2.1093 regarding safe RF exposure for humans.

● REQN-002: Components Interference

Synthetic Aperture Radar ECE Team 11 Spring 2016

7

● The Radio Frequency (RF) from the SAR imager should not affect communication between

any other electrical components in the design.

● REQN-003: Interference

● The Radio Frequency (RF) from the SAR imager should not interfere with common

communications systems in the environment.

● REQN-004: Logic Implementation

● The programing language used to communicate with the FPGA should be VHDL.

● REQM-001: Structural Redesign

● The redesigned structure should be optimized for weight and stability. This includes a

target weight goal of 80 lbs. Must still maintain rigidity. Increase the structure’s mobility,

preferably by introducing wheels to the structure.

● REQM-002: Horn Calibration

● Horns must be adjustable in both azimuth and elevation angles. Horn’s angular setting must

be within 5 degrees. Tolerance must be less than 1/10th of an inch. Must focus within a

circle of 1ft diameter from 20 ft. away.

● REQM-003: Component Box

● Component box must dissipate the heat generated by the electrical hardware. Its weight

and size must also decrease while being configured to the newly designed structure.

III. Design of Major Components

3.1 Structure designs

The design of the structure is strictly dictated by the geometry of the antenna array. As long as

the structure can support the 20 antenna horns and hardware box, the secondary goal of reducing weight

and cost was pursued in design.

3.1.1 Design S-1: 80/20 structure

The first design, Structure S-1, focuses around the use of 80-20, an industrial grade building structure

and test platform as shown in Error! Reference source not found.. 80-20 is very modular due to its

extruded aluminum profile and con be combined to other pieces through a variety of connectors. This

design is also very flexible because different sized pieces of 80-20 with different channel numbers can be

selected if more strength or surface area is desired.

Synthetic Aperture Radar ECE Team 11 Spring 2016

8

FIGURE-4: DESIGN S-1,3D (INCHES)

From the particular SAR radar array specified by Northrop Grumman, a 3x1channeled piece of 80-

20 was used as the main vertical and horizontal bars which hold the antennas in place. Four angled

brackets are used on the back of the structure to provide rigidity to the structure. This allows for near

endless translation of the waveguide holders so that they can be aligned relative to each other. 80-20’s

modular nature allows support beams to be attached anywhere. At the end of each horizontal beam,

another 3x1 piece is used to support the far side. In order to keep the device from toppling forwards or

backwards, two legs are added to each horizontal beam. This leg also serves to balance the weight of a

central rear mounted control box if this location becomes specified by the EE team. The green base plate

is an arbitrary ground; it shows how the structure would be mounted to a cart surface or floor with 45

angle brackets in red. Structure S-1 stands 64” tall and 61” wide from the extreme ends of the cross beams.

The top of the 3” wide arm is 33.5” above the ground making the center exactly at 32” above the ground.

The rear leg stands 19” away from the front and connects to the very bottom channel of the horizontal arm

at 31.5” high.

64”

61”

Synthetic Aperture Radar ECE Team 11 Spring 2016

9

3.1.2 Design s-2: Custom aluminum structure

Design S-2 features influences from last year’s design or Generation 1 (Gen1) and is shown below

in Error! Reference source not found.. Four pieces of Aluminum are bent or welded into an L shape

and are attached together at their ends. The connectors at each horizontal end extend down to the floor

to provide stability and weight relief to the center ground piece. Each waveguide adapter is sandwiched

between two different pieces with a rectangular cutout placed in the proper distances for the antennas.

There are four plastic gutters which protect and conceal the wires and are shown to be clear attached

to the rear of the L beams.

Figure-5: DesignS-2,3D (inches)

Detailed drawings of this design concept can be found in Appendix B. Each L beam is made of

0.375” Aluminum and is spaced 4 inches apart from each other to offer clearance for the waveguide

to rotate freely without interference. The rectangle which anchors the waveguide adapter and rotation

mechanism are spaced 1.5” x 0.5” to all some adjustment room to fine tune their translation. This

structure stands 64.55” tall and 63.65” wide with each arm 29” long. At the side of the structure, each

end cap stands 35.85” tall and 29.075” away from the downward side of the center. The inside of

each gutter is 4.75” apart and 26” long so that it doesn’t interfere with the end caps. The component

box will be mounted to the back the horizontal sections of the L beams.

64.55”

63.65”

Synthetic Aperture Radar ECE Team 11 Spring 2016

10

3.1.3 S-1, Version 2

While there were no issues with the stress analysis of the structure, additional components were

added for convenience. The main horizontal and vertical bars were increased in thickness to

accommodate the new horn holder design. There were additional horizontal bars added in the middle

of the structure in order to act as something to grab in order to move the structure. The bottom of the

structure was framed as well so that castors can be mounted. Figure 19 shows a rough representation

of what these addition look like.

Figure-6 : Design S-1 V2

3.1.4 S-1, Version 3

A slight modification was added to Version 2 was to extend the bottom forward bar out from the

structure. This addressed a few areas of concern:

• Sponsor requested a laser pointer based testing system that could be mounted to the structure. The

bottom platform could be used to mount this to.

• Although tipping would not be a problem when stationary, the extended bar would ensure that if

any unexpected forces were applied (i.e., in transit being rolled on wheels), there would be no risk of

tipping

• More structure if design were to change

Synthetic Aperture Radar ECE Team 11 Spring 2016

11

To account for this potential issue, the front of the base was extended 9” forward, while the cross

remain in the same position with respect to the rack of the base. This also increase the wheel base depth

to 30” which would increase stability of the structure rolling over a tilled floor as shown in Figure 7.1.3

below. A piece of 1545-8020 was added in the middle of the rectangular base to give the bottom of the

vertical horn beam support. Due to the restructuring, different attachment plates T-slotted nuts can be used

to secure the parts together. This results in a cost difference of $233.17.

Figure-7: S-1,V3

3.1.5 S-1, Version 4

To quantify the improvements in weight achieved by this year’s project over last year, weight analysis

of all the 8020 beams and needed attachment plates was performed. From the numbers given on the 8020

website, the weight of Version 3 was calculated to be 174lbs. This value was not a drastic improvement

over the structure of last year at 220lbs. As a result, the structure was changed back to 10 series to get the

weight closer to the 80lbs two person Military goal. This design iteration can be seen in Figure-7.

Synthetic Aperture Radar ECE Team 11 Spring 2016

12

Figure-8: S-1,V4

One key addition to this design is moving the forward most chassis beam to directly under the Vertical

horn holding beam. After talking with the electrical, having any metal in front of the antennas would cause

radar reflections and produce inaccurate measurements. The 30” wheelbase was kept to keep the stability

of the structure high. The weight of the simple handles on the sides of the structure was also reduced to a

lighter series. Leveling casters were implemented as the preferred leveling and movement solution.

Additional 45 deg cut pieces of 1010 Aluminum were order to give more rigidity to the structure.

3.1.6 S-1,Version5

In order to progress with our project, the physical prototype of Version 4 needed to be constructed.

After the prototype was completed some key problems arose. Economy Tnuts can only be inserted in the

end of the 8020. The nature of how some beams are joined together blocks of the end of some pieces.

Slide in nuts from the top face of the channel should be used if any other 8020 beams are to be added later

to give more rigidity. The Beam Analysis as performed in an earlier section came about due to the fact

that the center beams were drooping down in the middle. Also upon the application of a force, the Rear

chassis beam would vibrate in a different motion than the front beam. Going forward is it paramount that

we connect these two different pieces to make sure the structure acts as one entire unit.

Synthetic Aperture Radar ECE Team 11 Spring 2016

13

Even though the leveling casters were a nice in that they took care of the relative mobility of the

structure and leveling portion, the small heavily grouted tiles in the A-Side of the Engineering Building

did not go together well with the small 2” hard plastic wheels of the caster. During transit over this type

of tile flooring, the entire structure would shake violently and even cause some hardware to fall out. All

of these problems were taken car of in a final iteration Version 5 as shown below in Figure-8.

Figure-9: S-1, V5

The Front and Rear Chassis Beams are upgraded to 1020 with the second X channel in the vertical

direction. Since the front and back have the same new height, the other beams do not need to be cut but

just get raised one inch higher above the bottom of the structure than before. The leveling casters were

replaced with 4” soft rubber wheels to give much better mobility over a variety of surfaces. As a result,

new leveling hardware needed to be used since the leveling casters did not have a bigger wheel size.

Synthetic Aperture Radar ECE Team 11 Spring 2016

14

To resolve the problem of not having a leveling option to the structure a two part solution was devised.

First, a locking foot that could be locked in a used adjusted position was chosen to rise the rear of the

structure above the casters. Next, Special Mitey Mount Anti Vibrational feet as shown in yellow were

used to individually align the front of the structure on both the left and right sides. These feet are adjusted

by a common socket wrench. The resulting tripod is much easier to adjust than the four leveling casters

which is actually an improvement over Version 4. Also to connect the Front and Back chassis beams, a

18” piece of 1030 is used, which conveniently doubles as extra mounting holes for the lockdown foot.

Finally a decent amount of milled 45 degree 1010 beams were added to the stricter to resist the Vertical

Horn Holder Beam vibration and moment of inertia. These parts have yet to be included on the new

structure since the electrical team is performing last minuet tests but they have been delivered to the

Engineering College.

3.2 Horn Holders

3.2.1 Legacy Design

The horn holders act as the housing and the adjusting platform for the horns which emit and receive

the radio frequency signal. It is imperative that this action functions properly and that the error in the

accuracy should be minimized. The horn holders should allow the user to seamlessly calibrate the horns,

secure their position when required, and be able to adjust them if needed. The horn holder design from

the 2014-2015 team is in need of a complete redesign. This design only allowed for one degree of freedom;

Northrop Grumman has stated that the horn holders must possess two degrees of freedom (azimuth and

elevation).

Synthetic Aperture Radar ECE Team 11 Spring 2016

15

Figure-10: Gen 1 horn holder proof that the design caused deformation along the bottom of the horn

Above in Figure-10 the last year’s horn holder is displayed. This shows how the holder is a shell

that is screwed into the antenna structure. The horn sits within the shell and is rigidly attached to structure

once the shell is screwed in. The horns in the horizontal array can only have the azimuth angle adjusted

whereas the horns in the vertical array can only have the elevation angle adjusted. This limitation in

movement is due to shells fitting along the ¼” steel -frame.

Another point of concern lies within the actual adjustment of the horns. To adjust the angle of the

horn, one must unscrew the shell from the frame, tilt the horn to the desired position, and then screw down

the shell to the structure. The torque exerted by the screwing motion is significant enough to potentially

move the shell from its set position. This results in a tedious calibration process and detracts from the

effectiveness of the design.

 Lastly, the last year’s horn holder design is presenting a compressive force against the horn in

order to keep it in place. This is problematic because, in some cases, the horns are deforming due to this

force. As shown below in figure-10 one can see that the bottom lip of the horn is deformed. This is not

ideal for transmitting or receiving a radio frequency because the warped shell can potentially distort the

trajectory, thus skewing data or making it difficult to hit the desired target. It is also possible for the horns

to crack. Since they are made of an inexpensive plastic material, the horns lack the strength to withstand

strong compressive forces.

Synthetic Aperture Radar ECE Team 11 Spring 2016

16

3.2.2 Horn Holder Concept H-1

To amend these issues with the current design, Mechanical Engineering team #18 has been

working on multiple concepts, alongside the two mechanical engineers on our team. Three preliminary

designs were generated, all of which address the concern of being able to adjust the horns with two degrees

of rotational freedom. After deliberation with Northrop Grumman, one concept was selected as a preferred

design and will now be discussed in further detail.

Displayed above in Figure-11 is one of the preliminary horn holder designs. This concept allows for

the two degrees of rotational freedom needed, something not achieved in the current design. Its fulcrum

point is located near the center of the horn so that adjustments to the angle will be as accurate as possible

while calibrating the horn. This is contrasted to as if the fulcrum point where located at the rear of the

horn, making micro adjustments difficult because a minimal rotation at the rear of the horn would translate

into a large rotation at the front of the horn. This design also allows for a laser to be attached, making for

Figure-11: Cad image of the preliminary design iteration for

redesigned horn holder

Synthetic Aperture Radar ECE Team 11 Spring 2016

17

a more efficient calibration process. Further, the design is to be compatible with the 80/20 fasteners

allowing for easy mounting of each horn. This is because, the structural redesign will utilize the 80/20

extruded aluminum.

However, there were still some design flaws with this iteration. The main one being that the fulcrum

point, although ideally sound due to the adjusting closer to the center, would cause for interference when

tightening down. Because of this, the design was iterated once more so that the fulcrum point was pushed

back towards the wave guide, near the rear of the horn. Since the calibration will be done with an attached

laser, it is not necessary to have the pivot point at the center of the horn. The calibration will simply follow

the laser’s sight. This will ensure both accuracy of the horn’s position as well as simplifying the securing

mechanism’s adjustment. Thumbscrews were added to the design so that a tool would not be needed, this

will decrease the adjustment and calibration process.

3.2.3 Horn Holder Concept H-1 Version2

Design H-1 has been modified slightly to be fully compatible with the updated structure iteration.

The two ‘L’ brackets have been replaced by one solid bracket to provide more assurance to the holder’s

strength. To secure the azimuth and elevation positions, four combinations of a wing bolt, star washer,

and lock washer will be used. Recently, the ideal distances between the horns for optimal performance

were received from the electrical team. To satisfy those distances, the width of the outer bracket piece was

reduced so that there will not be any clearance issues. The shortest distance between horns will be between

the transmitter and adjacent receiving horns. To be sure that there will be no clearance issues between

these horns, smaller thumb bolts will be used instead of the wing bolts. A total CAD model of this final

assembly is shown in Figure-12. The material selected was Aluminum 6061 and once assembled and

connected with the horn and wave guide, the weight was approximately 1.5lbs. Also, the cost of one horn

holder came out to be $15 which of course would go down if more were to be manufactured.

Synthetic Aperture Radar ECE Team 11 Spring 2016

18

Figure–12: Final horn holder design

3.3 Component Housing

3.3.1 Legacy Component Housing

The component box houses all of the electrical components with the exception of a laptop and a

monitor screen. The box will mount on the back of the radar structure, making it a self-contained system.

The weight of the box should be minimal while maintaining easy access to all components for testing

purposes. The team from last year finalized the housing as seen in figure-13 which was designed in an

“L” shape in order to sit almost vertically on the structure. They decided to leave the housing exposed to

the ambient air to allow for sufficient cooling. Made of both steel and aluminum, this design was too

heavy and bulky which only added to the immobility of the structure and its size was larger than necessary.

The housing attaches to the frame with a slot and pin-type system where rectangular pins extrude from

the frame. The matching rectangular slots on the box allow for the two to connect. This design relies on

Synthetic Aperture Radar ECE Team 11 Spring 2016

19

friction and gravity with no real locking mechanism, making it potentially dangerous to the radar itself

and the users around it.

Figure-13 : Image of legacy component housing

3.3.2 Component Housing C-1

A complete redesign for the component housing was constructed that not only reduced the weight

and increased mobility, but integrated safety, protection of electrical components, electromagnetic

interference shielding, and eased electrical connections. Early design iterations consisted of an open flat

tray that would be able to sit on the structure to really minimize weight and allow for easy access to the

electrical hardware but this lacked a securing feature for the hardware as well as a lack of electromagnetic

interference shielding. As shown below in figure-14 is the final design iteration for the component

housing. The design philosophy for the housing was to firstly have ample space for testing to take place

and for a user to be able to access any component and simplify testing, and secondly to be as enclosed as

possible while still allowing for adequate heat dissipation. The reason behind constructing a sealed

enclosure was to minimize the amount of electromagnetic interference between the outside environment

and the electrical components inside, as well as being able to safely contain the electrical components and

Synthetic Aperture Radar ECE Team 11 Spring 2016

20

have the ability to lock and secure them. Further, a conductive elastomer was utilized along the inside of

the housing lid in order to ensure that any gaps in the housing would be properly sealed with an appropriate

electromagnetic gasket to again minimize interference.

Figure-14: CAD image of final component housing design iteration

 The first difference compared to last year’s design is the fact that this is now an enclosure and acts

as a black box where any inputs and outputs are configured on the exterior of the component housing so

that the enclosure can remain sealed and does not need to be opened or exposed in order to operate. The

external panel mounted connectors consisted of one VGA port for the FPGA, two USB connectors for the

FPGA and the VCO, one power connector and twenty SMA connectors. Also visible from figure-14 are

the pad-lockable latches on two sides which will allow for the housing to be locked, again ensuring that

the electrical components cannot be easily tampered with by an unknown user. The electrical components

are mounted on a drop-in tray that sits on risers within the enclosure; this allows the components to be

horizontal and thus easier to work with.

The housing’s dimensions are 30” x 17.25” x 5” with 0.09” thick Aluminum 6061. This resulted in

a huge weight reduction to 12.9 lbs before electrical components were installed. This decrease in weight

in turn increases the mobility. The box is able to sit and bolt onto the rear legs of the redesigned structure

Synthetic Aperture Radar ECE Team 11 Spring 2016

21

which allows for the housing to be more secure and improves on safety from last year with a more

permanent mounting design. The housing is shown mounted onto the structure below in figure-15

Figure-15 : Image of component housing mounted onto structure

Once the design was finalized, the manufacturing drawings were taken to the machine shop so that

the sides of the housing could be first water jetted. After the pieces were appropriately cut, they were to

be welded for assembly. Lastly, the housing was powder coated blue and then the panel mounted

connectors were installed along with the fasteners needed for installation. Shown below in figure-16 is the

component housing completed along with the rewired and installed components sitting on the drop in tray

in figure-17.

Synthetic Aperture Radar ECE Team 11 Spring 2016

22

Figure-16 : Completed and assembled component housing

Synthetic Aperture Radar ECE Team 11 Spring 2016

23

Figure-17: Rewired and installed electrical components

3.4 Component Housing Thermal Analysis

To begin thermal analysis on the component box, the first step was to determine the amount of

power supplied to each component to understand how much heat must be dissipated. In order to find this

value, the power supplied to each component was found by multiplying the rated current and voltage of

each component and then summed together as a whole. This is shown below in Table-1

Synthetic Aperture Radar ECE Team 11 Spring 2016

24

Table-1: Power supplied to electrical components

By adding each electrical component’s power supply, we received a value of 34.8 W. Next,

obtaining the inside surface area of the box will allow us to obtain the heat flux by dividing the input

power over the total inside surface area. As of now, the calculated inside surface area is 10.47 ft2. This

introduces a heat flux value of approximately 3.324 W/ft2. Using figure-18 as shown below, one can obtain

the rise in temperature inside the enclosure by assuming an “unfinished aluminum and steel enclosure”

giving us a value of approximately 16.65℃. This concludes that the temperature inside the enclosure is

about 16.65℃ higher than ambient temperature, which is taken as 21℃. This translates to an enclosure

temperature of about 37.65℃ during steady state operation.

This is shown in purple in Figure figure-18 below. This however changed once the component

housing was powder coated and thus was considered a “painted metallic” and therefore due to the

unfinished metal’s inefficient radiation heat transfer, more heat is radiated once the enclosure is painted.

This results in an enclosure temperature rise of about 9.5℃. Assuming room temperature, the final

enclosure temperature reaches approximately 30.5℃. Since the most sensitive component’s failure

temperature is (50℃) we are able to safely determine that the enclosure is constructed so that the heat can

effectively dissipate to allow proper functionality for the electrical hardware without risk of overheating.

Synthetic Aperture Radar ECE Team 11 Spring 2016

25

Figure-18 : Temperature Rise within Enclosures

3.5 Transmission Subsystem

3.5.1 Purpose

The Transmission Subsystem generates, amplifies, and transmits a 10 GHz RF pulse.

3.5.2 Components

Synthetic Aperture Radar ECE Team 11 Spring 2016

26

VCO
Super Ultra
Wideband
Amplifier

S
P
2
T

Fixed
Attenuator

x2 Frequency
Multiplier

Variable
Attenuator

Band Pass
Filter

Power
Amplifier

S
P
4
T

4 Transmit Antennas

Control PC

Ultra Wide BW Amp
Fixed
Atten.

LO Path

Figure-19: Transmission Subsystem components

The state of the SPDT switch determines when the system is in Transmission Mode. When in

Transmission Mode, the 5 GHz signal from the VCO is amplified, multiplied in frequency to 10 GHz, and

then amplified twice more before transmission. The fixed attenuators are in the design to prevent the

frequency multiplier and the switches from being over-driven. The variable attenuator provides fine-

tuning capability before the final amplification.

3.6 Reference (LO) Subsystem

3.6.1 Purpose

The Reference Subsystem provides the IQ Demodulator Local Oscillator with a 10GHz phase-locked

signal.

3.6.2 Components

The Reference Subsystem is identical to the Transmission Subsystem until the final stage of filtering

and power amplification that the reference path does not do. This is by design, since the purpose of the

signal is to compare with the returned signal, drift from the transmitted signal should be minimized. This

is why the Hittite Phase Lock Loop (PLL) VCO was selected. An internal feedback in the VCO corrects

any phase drift in the signal.

The state of the SPDT determines when the Reference Path is active. During this time, the system is

simultaneously receiving reflected signals, so this is referred to as Receive Mode. In all SAR

Synthetic Aperture Radar ECE Team 11 Spring 2016

27

documentation, “receive mode” should be interpreted to mean when the Reference Path and the Receive

Path are active, unless expressly stated otherwise.

VCO
Super Ultra
Wideband
Amplifier

FPGA Board

S
P
2
T

A/D (PMODs)

Fixed
Attenuator

x2 Frequency
Multipier

Control

Fixed Attenuator

IQ
Demodulator

LO

RF

I

I

Q

Q

Control PC

Ultra Wide
BW Amp

Transmit

Received Signal

Figure-20: Reference Subsystem

3.7 Receive Subsystem

3.7.1 Purpose

The Receive Subsystem collects the reflected signal from the downrange target, amplifies the signal,

and routes it to the RF port of the IQ Demodulator.

3.7.2 Components

After being received by the antennas, a bandpass filter removes extraneous signals not near the 10

GHz desired frequency. Two Low Noise Amplifiers (LNA) amplify the received signal to usable levels.

The variable attenuator prevents the first LNA from compressing the second LNA, and allows for precisely

tuning the receive level needed to the IQ Demodulator.

Synthetic Aperture Radar ECE Team 11 Spring 2016

28

FPGA Board

A/D (PMODs)

S
P

16
T

16 Receive Antennas

Control
Control

Band Pass
Filter

LNA1

Variable
Attenuator

LNA2

IQ
Demodulator

LO

RF

I

I

Q

Q

Reference Path

Figure-21: Receive Subsystem

3.8 System Control (FPGA)

3.8.1 Purpose

SAR radar is a synchronous system, which makes it important that a processing machine control

the components that makes up the radar. The processing machine used in the system is the NEXYS3

Digilent board. This FPGA board is equipped with enough I/O devices and ports to host a wide variety of

digital systems. Very High Speed Description Language (VHDL) language is used to program this board.

The speed of this devices along with its extended resource documentation made it suitable for the system.

Synthetic Aperture Radar ECE Team 11 Spring 2016

29

3.8.2 Requirements

The FPGA is required to control the Single pole double switch (SPDT). This switch activate the

transmitting path and the receiving path. Since the radar has to switch between transmitting and receiving

path in 60ns, this switch require a high-speed pulse to drive it. Each component in a radar is required to

be only active for a certain amount of time. In addition, the FPGA control the switching of the transmitting

antenna and receiving antenna by sending signal to the SP4T and SP16T respectively.

 In addition to controlling the switches, the FPGA is required to take in positive and negative

voltages from the In-phase and Quadrature-phase demodulator (IQ Demodulator). This is done by sending

signal to control the Analog to digital converter device purchased from the Digilent store.

 Finally the FPGA will use its processing power to implement a Fast Fourier Transform in order to

process the incoming signal from the scene. This signal processing ouput will be display on the VGA

monitor which is also controlled by the FPGA.

 A complete diagram of the system design is offered in Figure-22.

Figure-22: Top-level design diagram

Synthetic Aperture Radar ECE Team 11 Spring 2016

30

1. Method

 In order to accomplish the requirements of the system control, the team have completed different

coding assignment that control a specific components in the radar. At the end, all the code where

converged into one code that controlled the whole system.

Analog to digital:

The PmodDA4 ADC device from diligent are used to communicate with the NEXYS3 board.

This component is shown in figure-23. Two ADC chips were acquired and placed between the IQ

demodulator and the FPGA. The PMOD connectors are used to interface with the chips. These ports are

used for low frequency clock signals. This ADC chips digitalize the voltage range from 0 to 3.3 volts into

a 12 bits binary value. The code was tested using a DC voltage supply. The DC voltage where able to

digitalize and displayed on the 7-segment display. This code was improved from the 2014-2015 code. The

conversion formula between DC voltages to HEX is as follow.

𝑉𝐻𝑒𝑥 = (
𝑉𝑜𝑙𝑡𝑎𝑔𝑒

3.3
 𝑋 4095)

𝐻𝑒𝑥
 𝑒𝑞(3.7.3.1)

SP4T, SP16T, SPDT Switching logic:

Figure-23: A/D converter from Digilent

Synthetic Aperture Radar ECE Team 11 Spring 2016

31

The SPDT is responsible to activate the transmit path or activate the receive path. This switch

need to be transmit for 20 ns where a pulse will be sent out of the transmitting antenna. 100 pulse is

sent out of the transmitting antenna this will help build up the DC voltage in the IQ demodulator in

order to compare with the receiving signal. Since the signal that drive the SPDT is a high speed signal,

the VHDCI connector of the FPGA board had to be used. In addition, the SP4T control which antenna

is transmitting at the time and SP16T switches control which antenna is receiving; this components

were connected to the PMOD converter because their signal is a low speed signal. A complete signal

diagram is presented in appendix B. A strip down version of this diagram is showed in figure 3.7.3.2

where the relation between SPDT, SP16T is SP4T is pictured. In the figure, the receive window is 40

ns because the signal need to propagate through the air reflect from the metal and propagate back to

the receiving antenna.

VHDL library

In order to make the code modular, a VHDL library was implemented. The library contain

components that are used to perform different tasks. An explanation of the different components

follows.

Figure-24: SPDT Switching timing

1. ADC components

Synthetic Aperture Radar ECE Team 11 Spring 2016

32

Figure-25: ADC components

The ADC components picture in figure-24 control two ports of the PMOD (Bank A, and Bank B).

This components takes as input a 100 MHZ sample it to make a 25Mhz clock that are used to drive

the chips. The 25 MHz clock is assigned to SCLK1 and SCLK2. The code sample the input voltage to

SDATA1, SDATA2, SDATA3 and SDATA4. When done this code activate DONE1 and DONE2 to

let the users know that program is done. This is a good practice as it help to implement the final code.

2. 7-segment Driver components.

Figure-26: 7-Segment driver

The driver accept a 16 bits binary in port sig_in and output the hexadecimal value on the 7

Segment display.

3. Memory driver

Synthetic Aperture Radar ECE Team 11 Spring 2016

33

Figure-27: Memory driver

The FPGA board has 16 Mbytes RAM. This components allow the user to save and read the value

into the memory. When BTN equals zero, the driver allows the user to write data to the memory. Adr_in

takes in an address, and MemDB_in take in the data and put it at the specified address. When BTN equals

1, the driver allows the user to write to the output.

These components are easy to initialize when the library is declared. In order to use the library, use:

Copy and paste the SAR_LIB located in the school website/ the project flash drive into the project

folder. In the ISE driver go to project>>New VHDL Library. Fill in “New VHDL library name” box, for

example my_lib. Locate the folder SAR_LIB. Click ok. In the VHDL, write

Library my_lib;

USE my_lib.sar_design.all;

Figure-28: Declaring library

3.8.3 Challenges

Before the completion of this program, many obstacles needed to be overcome. Those obstacles forces

alternative path to be made. First the ADC voltage only digitalize voltage between 0V and + 3.3 V. The

IQ Demodulator on the other hands voltage range are from -300 mV to +300 mV. Therefore, negative

voltage were not able to be digitalize. Using a step up circuit will add noise and will require additional

Synthetic Aperture Radar ECE Team 11 Spring 2016

34

circuit to be made. In order to solve this problem, the I-bar and Q-bar channel of the IQ demodulator are

used. Using the fact that I and I-bar channel are complex conjugate, when one is positive the other is

negative, a logic circuit was able to be implemented using VHDL. This circuit was implemented and

tested. The output was a 13 bit binary where the 13th bit represent whether or not the value is positive or

negative. Although this circuit was able to be implemented, it was not used in the completion of the coding

because, all 4 channels the IQ demodulator value (I, I-bar, Q, andQ-bar) were saved to the memory and

exported to MATLAB.

 Another important challenge, was the fast pulse signal that drives the SPDT. A square wave with

0V low and at least +3.1V was required to switch the SPDT. When using the VHDC connectors, at high

speed the signal become distorted and the +3.1V was not always outputted see Figure 3.7.4.1.a. In order

to solve this, a circuit was used. This circuit is pictured in Figure 3.7.3.4.1.b. When no voltage from the

FPGA is applied, the MOSFET is in cut off region and the output is +5.5V. On the other hand, when a

voltage is applied by the FPGA, the output voltage is +0 V. A waveform of this characteristic is shown on

the Figure 3.7.4.2. The blue line represent output from the FPGA, and the green line is the output of the

circuit.

a)
b)

Figure-29: a) Output waveform from VHDC connectors b) Circuit

Synthetic Aperture Radar ECE Team 11 Spring 2016

35

Figure-30: LT SPICE output waveform

Different generation of this circuit was made, but the circuit was not used in the completion of this project.

Instead a waveform was used using the waveform generator.

3.8.4 Results

A final code was implemented. TOP_range is the name of the project file and can be found on the

project flash drive. The code consisted of a Moore finite state machine that controlled the antenna. This

code allows the radar to work in two modes of operation (Debug mode and Real time mode). In debug

mode the FPGA switches are used to control which transmit/ receive pair is activated. The sequence of

the antenna along with the combination of switches (SW) that activate the radar is presented in the table

3.7. 5.1. TX1, TX2 and receive 1 to 8 are located on the X-axis of the antenna. In this version of the

SAR radar, only the X-axis antenna was used in order to make the system simpler to troubleshoot. When

in debug mode the user is allows to press the push button on the FPGA to see the DC voltage input of

the I, Q, I-bar , and Q-bar channel.

Table-2 : Switching Control

Transmit Receiver SW5 SW4 SW3 SW2 SW1 SW0

TX1

1 0 0 0 0 0 1

2 0 0 0 0 1 0

3 0 0 0 0 1 1

4 0 0 0 1 0 0

5 0 0 0 1 0 1

Synthetic Aperture Radar ECE Team 11 Spring 2016

36

6 0 0 0 1 1 0

7 0 0 0 1 1 1

8 0 0 1 0 0 0

TX2

1 0 0 1 0 0 1

2 0 0 1 0 1 0

3 0 0 1 0 1 1

4 0 0 1 1 0 0

5 0 0 1 1 0 1

6 0 0 1 1 1 0

7 0 0 1 1 1 1

8 0 1 0 0 0 0

TX3

9 0 1 0 0 0 1

10 0 1 0 0 1 0

11 0 1 0 0 1 1

12 0 1 0 1 0 0

13 0 1 0 1 0 1

14 0 1 0 1 1 0

15 0 1 0 1 1 1

16 0 1 1 0 0 0

TX4

9 0 1 1 0 0 1

10 0 1 1 0 1 0

11 0 1 1 0 1 1

12 0 1 1 1 0 0

13 0 1 1 1 0 1

14 0 1 1 1 1 0

15 0 1 1 1 1 1

16 1 0 0 0 0 0

When all the switches are up the program is on real time mode. The receive antenna are switched

sequentially using the pattern showed in the appendix B. The VGA display was not implemented in this

version of the code because the data processing was done in MATLAB. However, code for the VGA is

also present in the library.

Finally, this code let the user save the data of the from the 4 channels IQ demodulator into the RAM

storage of the FPGA. Refer to user manual on how to do that. This code not fully tested, as the time

between the construction of the radar and the implementation of the code did not allow too many full

range testing. However, loading the data in the memory should work because it was tested using the DC

voltage supply.

Synthetic Aperture Radar ECE Team 11 Spring 2016

37

3.9 Display

3.9.1 Purpose

The purpose of the display was to implement a control a VGA monitor in order to inform the user

about which phase center was picking up the most reflected signal. The display does not necessarily tells

the user where in the scene the metal is, it only give an idea as to what region of the scene were have the

most reflection.

3.9.2 Requirements

This version of the VGA monitor code is an initial step to show that the outputting data on the monitor

is possible. The display consisted of displaying 16 columns each representing the phase magnitude of the

Fast Fourier Transform at each of the angle bin.

3.9.3 Method

The code for the VGA is done and is located on the project flash drive. The VGA code use a 108 MHz

clock to produce 1280 x 1024 resolution. The refresh rate of the monitor is 60Hz which allows any data

from the scene to come and be display in little bit more than 17 milliseconds. Furthermore, this resolution

divided the monitor into 1640 Horizontal lines and 1065 vertical lines. The parameters used to program the

VGA is presented in the table-3.

3.9.4 Challenges

The challenging part of the VGA display code is to create a 108 MHz clock. In practice in order to

create a clock a faster clock need to be sampled. Since the FPGA clock is 100MHz, this clock was not

able to drive the VGA components. In order to solve the problem, Xilinx IP core generator clock wizards

Table-3: VGA monitor Parameter

 Pixel Clock pulse

(pixels)

Back Porch

(pixels)

active

(pixels)

Front Porch

(pixels)

Total

(pixels)

Horizontal 108 MHz 112 248 1280 48 1688

Vertical 108 MHz 3 38 1024 1 1066

Synthetic Aperture Radar ECE Team 11 Spring 2016

38

was used to create a 108 MHz clock. If one need to reconfigure the code, he/she has to recreate the IP core

clock wizard. Although using the core generator is a good practice, it need to be understood before it is

used in the code. For example, when declaring the code, one has to make sure that the input CLK is not

declared as a buffer or else the program will not compile and will give an error. It is advised to look up

the datasheet about any core used in Xilinx.

3.9.5 Results

Although this code is completed, it was not used to in the code because the processing was done in

MATLAB as a way to prove the concepts. However the code was tested using the switches and a DC

voltage generator. The ADC will take in value from the DC supply. The switches where used to determine

which column on the monitor was activate. Changing the voltage from the DC supply will vary the height

of the column.

3.10 Signal Processing (MATLAB)

3.10.1 Purpose

The purpose of implementing MATLAB is to serve as a base interim goal for the signal

processing on this project. At the beginning of the year, the main goal was to implement all of the

signal processing on the FPGA, however, this goal was adjusted January of 2016. MATLAB will

serve as a good testing tool for signal processing work in the future upon new iterations of the

SAR system. Originally, MATLAB processing code was to be worked on in parallel with the signal

processing code in VHDL, however, this was also altered when the team realized that real time

signal processing would require a lot more time to implement that was just not available during

the year.

Another reason why MATLAB was chosen as a medium for performing signal processing

work was to allow for future development of the system as a whole. Using MATLAB allows for a

Neural Network to be more easily implemented, allowing for greater image recognition and image

formation accuracy.

Finally, MATLAB offers many toolboxes, such as the Phased Array toolkit and Simulink,

which will help with testing the radar in future iterations of this project. Another reason for

deciding to implement the signal processing work on MATLAB was the amount of image and data

visualization tools that is offered with the software. It is possible to simultaneously generate a 2-

Dimensional Cartesian plot, a 2D Bar Graph plot (simulating the “stripe” that would appear on the

Synthetic Aperture Radar ECE Team 11 Spring 2016

39

dedicated VGA display in real time targeting), as well as a 3D view of the scene when trying to

visualize the energy scatter at the scene after performing the Fourier Transform on the received

signals. Finally, MATLAB also makes it easier to create custom functions that can perform

boresight calibration of the data, which will be expanded upon further in this section.

3.10.2 Requirements

The main requirement for the MATLAB signal processing is to implement code that will

perform the Discrete Fourier Transform (DFT) on the reflected signals coming back from the target

at the scene. The Fourier transform is one of the key techniques that is used in almost all signal

processing. The Transform will be able to take the signal, pick up different energies and distances

once put through the transform, then using this data, be able to form a certain scattering of these

energies and give all of the necessary information to generate the image that was captured at the

scene. Specifically, the transform is used to decompose the signal into different sine and cosine

waves.

Along with writing the DFT code in MATLAB, data visualization must also be implemented

simultaneously to the DFT calculations, so that somebody can look at a graph and see where the

highest energy signature in the scene is coming from.

The next requirement is to save the basis functions that are created by the phase centers

between the transmit antenna pairs into MATLAB and be able to do some mathematical

manipulations on them. The requirement that may be the second most important is to be able to

allow the FPGA and MATLAB to “talk” to each other. More specifically, a method that is used to

convert the I and Q data taken from the FPGA into a suitable form that can be used in MATLAB.

Finally, the last requirement is to write code that will implement the calibration code that is used

to correct for the phase slope error that happens in the near field transmission.

3.10.3 Method

When attempting the write the code to perform the Fourier Transform in MATLAB, a few

things must be considered. The first is that all of the calculations must be saved into a singular

function that takes in an array of 16 I values and a second array of 16 Q values, in order to speed

up the processing. With the Fourier Transform is able to be calculated with one line of code, it

shows great improvement over the excel spreadsheet with test values that was used to do signal

Synthetic Aperture Radar ECE Team 11 Spring 2016

40

processing in the year prior. Within this matlab function that was written, the phase angles for all

of the phase centers were saved into an array, which these are generated by the spacing of the

actual transmit and receive antenna horns. The basis functions must be saved in this code as well.

When creating these basis functions based on these phase angles, a 16 by 16 matrix was created.

Now this is done, the Fourier transform can be computed. Using the received I and Q values,

complex multiplication with this basis function matrix can be completed. An example of this is

shown below:

Figure-31 : Snippet of MATLAB code showing complex multiplication of I and Q values with

the basis functions

Once this is completed, these I and Q values must be added together and converted to the

decibel (dB) scale. Finally, these values must be plotted in Cartesian form and bar stripe form

against the bin angles, or the angle of the corner reflector downrange in the scene, relative to

boresight. Both of these plots are shown below:

Synthetic Aperture Radar ECE Team 11 Spring 2016

41

Figure-32: 2D Cartesian plot of energy scatter

Synthetic Aperture Radar ECE Team 11 Spring 2016

42

Figure-33: 2D bar plot of energy scatter “stripe form”

Now that the Fourier transform code has been completed, the code for taking the received

data from the FPGA needs to be completed. The method that was used to go about this was to take

the hex values that were stored in as an upper byte and a lower byte for each I, Ibar, Q and Qbar

channel, then saved as a binary file from the FPGA memory and convert them into voltage values

and save these values into two 1 by 16 sized arrays. To do so, the hex values had to be converted

back to a DC voltage value, which was done by the following computation, as seen by the snippet

of code:

Figure-34: Snippet of MATLAB code showing how to convert hex I and Q data from upper byte

and lower byte notation in a binary file to a DC voltage value

After this, the I and Q data was sorted into the 1 by 16 sized arrays for computation in the DFT

algorithm, which is given as the output of the matlab files used. To note, there were two separate

matlab functions that read in and converted all of this data from the FPGA, the first to read the I

Synthetic Aperture Radar ECE Team 11 Spring 2016

43

data and output the correct values measured, and the second to do the same with the Q values that

were measured. Finally the method that was used to do the calibration calculation was to create a

separate function that takes the complex conjugate of the received I and Q data at boresight and

multiplies it with any received values that are taken at any angle away from boresight. In theory,

this should isolate the single energy peak at the bin angle where energy is being detected, however

this did not turn out as planned, as this was an unexpected error. Essentually regardless of where

the corner reflector was placed at the scene, after calibration, the peak amplitude would always

converge towards 0 degrees, as if something were being targeted at boresight. This issue most

likely comes from some multipath error, as discussed further on in RF testing results.

3.10.4 Challenges

There were many challenges when it actually came to doing the signal processing on

MATLAB, but first, the challenges that were encountered during the actual coding must be

addressed. To start, there was an initial misunderstanding between teammates on how the data

coming from the FPGA will actually be represented. This was because there was the initial idea

that the only values that are to be saved to the FPGA are from the I and the Q channels, so separate

logic needed to be written in order for the code to recognize whether or not the values coming in

are negative.

This initial challenge was met by creating a reference that the received value will be negative

if the decimal value if above the integer value 4096. This was done after raw conversion of the hex

value, but before “normalizing” the value to a voltage value that exists in the millivolt range.

Specifically, this “normalization” challenge was tackled by simply dividing the decimal value after

hex conversion by 4095 then multiplying that result by 3.3 volts, or the voltage that controls the

ADC switching logic. However, this ended up being incorrect and incomplete, due to the fact that

the code for controlling the inverse I (Ibar) and inverse Q (Qbar) channels from the IQ demodulator

had been completed.

This code is the most recent challenge met, also the last MATLAB challenge to tackle. Reading

all four channels meant that there would actually be another set of 64 bytes representing the inverse

I and inverse Q channels, also forcing for the need to alter the logic used to detect a negative value.

Now the negative value would show up as a positive number in the inverse channels, while the

normal I and Q channels will show a value of zero in that location in the array. This was logic was

Synthetic Aperture Radar ECE Team 11 Spring 2016

44

corrected by setting up a check in the code. If the I or Q channel has a hex value of 0 for both their

upper byte and lower byte locations, then then data must be taken from the inverse channel and

then the normalization calculation can be completed. If the inverse channel was used, then the code

will simply make that value negative and place it in the new array for I and Q. A snippet of this

code is seen below:

Figure-35: Snippet of MATLAB code logic for negative and positive values from ADC and

FPGA along with normalization code. (Check is set as 0 in beginning of code)

The next challenge that was to be dealt with is the issue of calibration. Due to the fact that there

will be error in the data from the radar not operating in the far field, there will be some phase slope

that is created when going off at more extreme angles in the scene, so to correct this, there needs

to be code to make up for that error. The only challenge that was presented was a more simple way

of doing the complex conjugate multiplication with the data taken at boresight, then saving those

values, and reusing all of them for any data taken at other angles. Luckily, the decision to use

MATLAB allows for data to be saved into variables and then brought up whenever is necessary,

so that challenge was easily met.

A challenge that was foreseen would be if the energy scatter at the scene had too much extra

energy signatures from foreign objects, making the signal processing much more complicated than

can be dealt with in the time provided for full work on the design project. Finally, there is a

challenge that MATLAB inherently presents, and that is the issue of not being real time signal

processing and image formation. After discussing this with our sponsor, the latency between

bringing the data from the FPGA to MATLAB, then the processing speed of MATLAB, was not

too much of an issue, because it shows very clear progress from the previous year, in terms of

efficiency, effectiveness, versatility and speed.

3.10.5 Results

Overall, the code itself does operate as expected. The fourier transform MATLAB code was

verified using the excel signal processing file provided by the sponsor from the previous year. The

Synthetic Aperture Radar ECE Team 11 Spring 2016

45

stark difference is being able to quickly perform the signal processing, being able to read data

straight from the system itself and performing the calculations. The code that reads the I and Q

data off of the FPGA memory does work in practice, but only with the slider switches and the

values that they generate by writing to memory. This was not able to be tested with actual data that

was taken with the radar in the field, but not due to an error with the MATLAB code, but rather

the results that were taken as the radar was operating were not the correct values that were coming

in and there were issues with writing these data points to the memory of the FPGA.

Furthermore, this MATLAB code was also verified and tested by creating an array of 128

values, chosen at random by the randn MATLAB function. The resulting output from the readI

and readQ MATLAB functions were in fact a 1 by 16 size array for both I and Q, showing both

negative and positive values. This proved that the logic for pulling negative and positive values

from all 4 channels from the IQ demodulator did work as intended.

Finally, while the calibration code was written as the sponsor directed it to be written, the

actual results of this calibration code were not ideal, however it is important to note that the

calibration code can easily be changed if a new method if figured out in future development of the

project.

No coding work on the neural network has been completed by the students on the team, simply

because the main goal was to get a functioning radar system first. Given more time, or

opportunities with future teams on the project, this can also be easily implemented given that the

I and Q data does get stored in matrix form, allowing for easy implementation into the neural

network algorithm that the instructor has created. The resulting MATLAB code as it stands now

can be considered a success and a vast improvement over the previous year in implementing signal

processing, closer to real time than the excel spreadsheet presented from the prior team. Moving

forward, this MATLAB code can be handed off to any future team on the project, as a way to assist

in testing the radar once the issue of multipath error has been solved, as well as a toll to utilize

when creating and debugging the code that will be used to implement the signal processing natively

on the FPGA.

Synthetic Aperture Radar ECE Team 11 Spring 2016

46

3.11 Signal Processing (VHDL)

3.11.1 Purpose

The purpose of implementing the signal processing using VHDL natively on the FPGA is to

create a SAR system that more closely represents a final product that will be used in industry.

Performing all of the signal processing on the FPGA effectively cuts out the need for an extra

computer being in the loop and performing the processing on MATLAB. This also allows for real

time signal processing, allowing for a great increase in speed of processing and near immediate

image formation on the dedicated VGA display.

3.11.2 Requirements

The first requirement is that the FPGA needs to have the basis functions stored onto the board’s

own memory. The next requirement is that the FPGA be able to store the results of the Fourier

transform onto the memory to be able to access it any time after for whatever reason. The FPGA,

and most importantly, must be able to implement the Fourier transform completely independent of

another computer.

3.11.3 Method

The signal processing using VHDL must be implemented using a Fast Fourier Transform

(FFT) algorithm. This can be done in three ways, either by utilizing an IP core provided by Xilinx,

which is difficult for several reasons, implementing a hard coded FFT algorithm, or by purchasing

a separate FFT module that can be added onto the FPGA, however this would be a very expensive

option, roughly over $2000.

The downside to the second option is that it would take much more time to develop an

algorithm and implement it on VHDL than it would be to order the separate module and spare a

lot of VHDL coding. Using code on the FPGA board that was developed from an algorithm will

also take more processing time to do all of the calculations than the time it would take the FFT

module to do the same work. This, however, is a much better option that paying for a separate

module. This algorithm was actually found during research in the College of Engineering’s own

Dr Meyer-Basae’s book “Digital Signal Processing with FPGAs.” This specific algorithm can be

seen below, implementing 5 additions and only 3 multiplications, being seen as fairly efficient use

of the FPGAs processing power and being more cost effective, not needing nearly as large of logic

Synthetic Aperture Radar ECE Team 11 Spring 2016

47

circuits to perform these calculations, as compared to the complexity of implementing a fourier

transform and complex multiplication through other means in developing such an algorithm from

scratch.

Figure-35: FFT algorithm for complex multiplication between I and Q data received, with the

basis functions

Finally, the other method of using an IP Core provided by Xilinx is most likely the best option

because all of the coding is pretty much provided, with only some minor modifications needed to

be made to include the basis functions that are used during the transform.

3.11.4 Challenges

The biggest challenge with implementing the signal processing on the FPGA using VHDL is

simply the time it would take to fully realize the code and get it to a working state. As described

above, the largest challenge with buying a separate FFT module for the FPGA is simply that the

cost is too large in comparison to the rest of the budget to actually justify purchasing. Another

challenge with that method would be learning how to interface the actual module with the FPGA

board itself. Finally, another challenge would be how to make the signal processing VHDL code

work in tandem with the rest of the FPGA code and integrating that into the state machines created

to control the rest of the system, making the control logic just a bit more complicated. Finally,

another challenge would be to somehow communicate the results given from the FFT and have

that integrate with the dedicated VGA display.

3.11.5 Results

After about February, the decision to hold back on implementing the signal processing on the

FPGA was made so that it would be easier to focus on implementing the signal processing on

Synthetic Aperture Radar ECE Team 11 Spring 2016

48

MATLAB. This was to create an incremental goal, and allow for greater testing of the signal

processing and of the system. This also allows for a better method of debugging the VHDL code

when that will eventually be written. While the FPGA certainly allows for near real time signal

processing and it empirically faster at doing the signal processing than it is the do all of the signal

processing externally on MATLAB, there simply wasn’t time to further work on the signal

processing on the board itself.

This was one of the most important engineering decisions made during the course of the project

this year, teaching the team lessons about defending their reasoning for going through with certain

options, as well as serving as a real world lesson in that iterative designs can be used to demonstrate

certain functions of a system being engineered. For future recommendations on how the signal

processing should be implemented on the FPGA is to use the resources that have already been

given. Using MATLAB to troubleshoot the coding and to compare results of the FFT during

targeting will greatly speed up the process of making sure the signal processing is being

implemented correctly on the FPGA board.

Any future team should also seriously look into implementing the Xilinx FFT IP Core rather

than creating and coding a FFT algorithm by hand, because the IP Core FFT is most likely better

optimized for the specific Xilinx FPGA than any code that is written from scratch.

IV. Test Plan

4.1 Test Phases

4.1.1 Phase 1: Legacy Verification Testing

 The first phase of testing focused on verification and evaluation of the legacy prototype. In addition

to establishing a baseline for the situation the team was inheriting, the initial battery of tests were an

important familiarization exercise. There was a steep learning curve, not just for radar, but for microwave

components in general and their associated test equipment. It was the first exposure for most of the team

to high-frequency function generators and the spectrum analyzer and network analyzer.

4.1.2 Phase 2: Re-design Iterative Testing

 As the picture of the legacy design’s status became clearer, focus was shifted to improving the

design and completing the signal path. The process of synthesizing new code occurred in this phase.

Synthetic Aperture Radar ECE Team 11 Spring 2016

49

Development began with top-level functional diagrams, then moved on to state diagrams, timing

diagrams, pseudocode, writing, and iterative testing and debugging.

 During this phase, it became clear that MATLAB was far better suited to solving the signal

processing problems given its wider range of native signal processing tools and ease of use over VHDL.

As it was initially set out, the FPGA was to precisely drive the control lines at high frequency, provide

signal processing, run calibration logic, and drive a custom VGA display system. The scope and volume

of VHDL code to be written reinforced the decision to outsource most of those functions to MATLAB,

even at the cost of stand-alone functionality and real-time processing.

The FPGA-driven VGA display would only be stipes on the screen representing the phase centers,

so if the user ever wanted to manipulate that data in any interesting way, they would need to export it to a

program like MATLAB anyway. A limited VGA display framework was set forth at the request of the

sponsor, but writing custom display drivers from scratch in hardware language was not the most effective

use of very limited human resources, especially given that critical FPGA system control code remained.

Work continued on the FPGA system control code modules, but signal processing resources were shifted

to MATLAB development.

Phase 1 testing should have revealed that the SPDT switch that controlled transmit/receive mode

switching was faulty, but the suitable test equipment that had to be sent by Northrop Grumman arrived

damaged. After the lead time to get the proper equipment, lack of experience in high-speed microwave

switches and lack of experience with the test equipment resulted in numerous inconclusive results. While

this was frustrating, valuable insights were gained regarding the proper procedures for testing microwave

components, as well as experience in operating and interpreting the readings on the spectrum analyzer.

Spare switches of a different (cheaper) model were available and implemented, but the FPGA

lacked the output voltage to reliably switch them. A voltage step-up circuit requiring miniscule, high-

frequency surface-mount components was designed and prototyped. In terms of learning objectives

achieved, the exercise was incredibly beneficial. The team was exposed to Eagle CAD, PCB milling, high-

frequency circuitry, and precision soldering for the first time. However, the cost in terms of time wasted

on a part that was blown up anyway was immense. Not having this part outsourced to a PCB fabrication

service was a major blunder in project management. It was clear at the onset that the college did not have

the resources to properly fabricate this component, and action should have been taken earlier.

 Meanwhile, the mechanical engineers went through design and testing iterations of the frame,

component housing, horn holder assemblies, and optical alignment assemblies. A major lesson learned in

Synthetic Aperture Radar ECE Team 11 Spring 2016

50

this process was to always make sure to leverage the experience and expertise of machinists and

technicians. Input from the machine shop influenced several design changes for the better. At times,

productive communication between the engineering team and the machine shop broke down, and it

resulted in the component housing being built backwards. This forced the re-design of the electrical

component layout.

4.1.3 Phase 3: Migration Testing

 The objective of this phase of testing was to verify that the SAR electronic system still worked in

the newly-fabricated structure and component housing. Phase 1 tests were conducted again on the newly

designed implementation successfully. Changes in cable run lengths required that the fixed attenuators in

the system be changed to preserve the power budget. Future teams should consider the fixed attenuators a

tool for optimizing the gain/loss characteristics along the signal path and not something written in stone.

Some of the components are running near compression and some are well below. In addition to this, the

team learned some valuable lessons on optimizing signal strength in an RF electronic signal path. The

most important being on how to pad the attenuation of the signal in order to most effectively increase the

transmitted signal power without reaching saturation levels for any single component, effectively driving

signal performance down. While this was not achieved fully, it did allow for greater exposure to solving

engineering challenges dealing specifically with the optimizing electronic signal paths and how to balance

these changes in any given path with other branching paths in the system. Specifically if there is a very

high transmit power that is needed, knowing how to pad and attenuate that power on the receive chain is

imperative so that no sensitive component is being fed too powerful of a signal, while also making sure it

is not being fed too low of a power signal. More extensive field testing will reveal the optimal solution

since this team did not collect enough field data to verify what the optimal variable attenuator settings are

for the chosen operating environment.

4.2 RF Range Test Results

4.2.1 Purpose

RF range testing represents the final phase of testing. The 2016 team sought to demonstrate the

detection functionality of the SAR Imager and to collect the first data sets of what will be the extensive

field testing required to fully characterize the full SAR imaging problem.

Synthetic Aperture Radar ECE Team 11 Spring 2016

51

4.2.2 Method

Initial range testing was conducted in AME 234. This room was chosen for its relatively open floor

space and after-hours access.

In lieu of a suitable anechoic testing venue, anechoic RF absorbing panels were mounted onto wooden

stands that were placed behind the reflector. This was meant to absorb background reflections with the

hope that most other reflections would dissipate sufficiently to be negligible with respect to the direct

target reflection.

The SAR pulsed the corner reflector at boresight using FPGA Manual Mode. Transmit/receive mode

switching was driven by Tektronix AFG 3022B Dual Channel 25MHz Function Generator using the

settings in the SAR user manual because the voltage step-up circuit that would allow for FPGA mode

switching was overloaded previously.

Voltage was measured from the I and Q channels of the ID Demodulator for each transmit/receive pair

and tabulated.

4.2.3 Results

Initial tests yielded I and Q voltages near or over the maximum output voltage of the IQ Demodulator

of 300mV, particularly for the pairs closest together. Increasing attenuation at both variable attenuators,

thereby reducing power transmitted and received, mitigated this to some degree, but the transmit/receive

pairs closest together were still noticeably higher than the other pairs even though the reflector was at

boresight.

A great amount of time was spent moving the RF panels around the room, trying to find an

arrangement that would mitigate what appeared to be the junk data. This proved difficult, not only because

a single transmit/receiver pair was observable at a time and the data was fluctuating +/- 10mV when

everything was stationary, but also because very small movements of an anechoic panel would result in

large spikes on the meters, or nothing at all. This should not have been surprising since the wavelength at

10 GHz is only 3cm. At such small wavelengths, changes on the order of inches could be quite significant

with respect to a 3cm wave.

However, removing the corner reflector from the scene made a clear difference, so it was decided to

move the reflector radially about boresight as planned so as to collect enough data to conduct meaningful

analysis. When the reflector was -5 degrees from boresight, the data in figure-36 was collected. The figure

Synthetic Aperture Radar ECE Team 11 Spring 2016

52

shows the recorded data in orange over the basis function for -5 degrees shown in blue. A best fit line of

the measured data reveals that the results may be more in line the ideal model than it seems at first.

Figure-36: Difference in phase angles

As promising as this was, it was getting late in the evening on the last weekend of the project by this

time. It was decided to set up the system outside in the empty parking lot to get an idea of how much

difference being inside an enclosed room made. Outdoor data is shown in figure-37below.

-150

-100

-50

0

50

100

150

0 2 4 6 8 10 12 14 16 18

P
h

as
e

In
 D

e
gr

ee
s

Phase Center

Difference in Phase Angle -5 degrees to Boresite and
Basis Function at -5 degrees (Indoor)

Basis
Function
Ideal
Actual
Measured

Linear
(Actual
Measured)

Figure-37: Phase vs Phase center with corner reflector

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

P
H

A
SE

 IN
 D

EG
R

EE
S

Phase Center

Reflector at Boresite (Outdoors)

Synthetic Aperture Radar ECE Team 11 Spring 2016

53

 As can be seen from the data taken with the radar in the outdoor, empty parking lot, the phase

slope for the corner reflector being detected at boresight is roughly 0, with a phase offset of approximately

3 degrees. Interestingly enough, the phase slope for an image at boresight given the basis function image

formation also is a flat line, but positioned at 0 degrees, with no offset. This offset represents some error

in the system, but being off by a small amount is not as important as the actual phase slope very closely

resembling the ideal phase slope in a vacuum type setting. This shows that the radar system is functioning

correctly, while not being completely perfect. This is due to the issue of multipath error, as a result from

multiple reflections at the scene. However, this data is much more accurate than the data that was taken

in the indoor lab, showing how much of an effect multiple reflections can have on an imaging system.

4.2.4 Discussion

Unfortunately, workflow in the laboratory portion of the project had to be stopped in order to produce

the project deliverables and the team was already pushing the timeline to the limit. The -5 degrees from

boresight data that would be directly comparable to the indoor data collected was invalid due to loose

connectors that were hastily fastened by flashlight.

Much more data needs to be taken in the field before the following educated conjectures could be

considered conclusions; but nevertheless, we believe the deviations in the measured phases from the ideal

phase slope are likely due to lack of transmit/receive antenna isolation and multipath reflections.

4.2.4.1 NEAR FIELD EFFECTS/ ISOLATION

The figure below shows the radiation pattern of a pyramidal horn antenna similar to the antennas used

in the SAR design. Notice the side lobes and rear lobes radiating away from the main directive beam.

Synthetic Aperture Radar ECE Team 11 Spring 2016

54

Figure-38: Horn antenna radiation pattern

http://www.wipl-d.com/applications.php?cont=antenna-design/aperture-antennas

The spacing of the transmit antennas from the nearest receive antenna was based on a ray model

similar to figure with generating an idealized phase center in mind. However, this model fails to take into

account the near-field effects from the transmitter. The side lobes and/or rear lobes of the transmitter are

impinging on the adjacent receiver. This would explain why the transmit/receive pairs on the ends of the

array (i.e. closest together) were experiencing higher voltage levels at the output than the other pairs.

In transmission mode, the signal is being routed to the transmit antennas, but the Low Noise

Amplifiers (LNA) are still powered and amplifying whatever they are receiving, regardless of whether the

system is reading that signal or not. It is possible that LNA 1 is receiving the near-field radiation from the

adjacent transmit antenna, amplifying it, and overdriving LNA 2. In fact, both may have been at or near

compression when the variable attenuators were set low.

When the system switches to receive mode, the LNAs may still be in recovery time from being

saturated, causing errors.

Synthetic Aperture Radar ECE Team 11 Spring 2016

55

Figure-39: Near-field bleed-over from adjacent transmitter

4.2.4.2 NEAR-FIELD MITIGATION: PHYSICAL DIMENSIONING

The most direct approach to mitigating the near-field bleed-over is to simply increase the distance

between the transmitters and adjacent receivers. One could take the term “isolation” literally and separate

the antennas with RF absorber material, to boot. This approach is shown in the figure below.

Synthetic Aperture Radar ECE Team 11 Spring 2016

56

Figure-40: Near-field effect mitigation by way of increasing distance

This approach would have consequences in signal processing since it changes the location of the phase

centers. Unless you wanted to simply throw out four receive horns and four phase centers, the whole

system would have to be modeled again (which might not be a bad idea).

4.2.4.3 TRANSMIT/RECEIVE ISOLATION SWITCH

Another approach would be to utilize the spare SPDT switch already in inventory to direct the receive

signal to a 50 ohm load while the SAR is in transmit mode. Since it is the exactly the same as the switch

that controls transmit/receive mode switching, one can essentially copy and paste the VHDL control logic

to another FPGA port and run both switches on the same clock. Two possible implementations of this

solution are shown below.

Synthetic Aperture Radar ECE Team 11 Spring 2016

57

Figure-41: Isolation switch design 1

Figure-42: Isolation switch design 2

VCO
Super Ultra
Wideband
Amplifier

FPGA Board

S
P
2
T

A/D (PMODs)

S
P

16
T

16 Receive Antennas

Voltage
Control

Voltage
Control

Band Pass
Filter

LNA1

Variable
Attenuator

LNA2

IQ
Demodulator

LO

RF

I

I’

Q

Q’

Control PC

SP2T
Switch

50 Ω
Load

Transmit Path

LO (Reference)
Path

VCO
Super Ultra
Wideband
Amplifier

FPGA Board

S
P
2
T

A/D (PMODs)

S
P

16
T

16 Receive Antennas

Voltage
Control

Voltage
Control

Band Pass
Filter

LNA1

Variable
Attenuator

LNA2

IQ
Demodulator

LO

RF

I

I’

Q

Q’

Control PC

SP2T
Switch

50 Ω
Load

Transmit Path

LO (Reference)
Path

Fixed
Attenuator

Synthetic Aperture Radar ECE Team 11 Spring 2016

58

4.2.4.4 MULTIPATH INTERFERENCE

The other source of phase distortion is clearly multipath fading. Moving around the room holding an

anechoic panel and watching the IQ Demodulator output change strongly suggests that the effect of

multipath fading was underestimated.

It is not simply a matter of filtering out the noise floor as we initially thought. Each reflected signal

returns to the receiver having taken a different path, and thus arriving at a different phase, and the receiver

is being bombarded by countless reflected signals with unique phase shifts. This presents a fundamental

problem since measuring the phase shift of the target reflection is what a radar is meant to do!

 Figure-43: Diagram of multipath

Statistical models for multipath fading exist, Rayleigh and Rician fading come to mind, but they don’t

seem to be applicable to this situation. Developing an empirical model of the room might get one close to

something, but it would require mathematics far beyond the undergraduate level to accomplish. And it is

doubtful anyone wants to write a PhD thesis about AME 234.

4.2.4.5 RECOMMEND OUTDOOR TESTING

On the other hand, results in the outdoor environment seemed more reasonable, though there was not

enough time to collect very much data. All the learning objectives for the project can still be accomplished

is the SAR is run in an unobstructed outdoor environment.

Synthetic Aperture Radar ECE Team 11 Spring 2016

59

V. Project Schedule

VI. Budget

This year, Northrop Grumman allocated the team with an amount of $5,000 for the initial

budget, with a pool of another $5,000 if necessary. These funds were provided by our sponsor

through the Electrical and Computer Engineering Department. The team’s goal was to remain

under the initial budget in order to remain cost effective. The first generation of the project had

spent a majority of its budget on electrical components: approximately $31,730.83. The initial

assumption was that the majority of the electrical components were purchased so that this year’s

budget can focus on test equipment and materials for the component housing. With this, our initial

budget was estimated to be very well under $5,000 as shown below in figure-44

Synthetic Aperture Radar ECE Team 11 Spring 2016

60

Figure-44: Estimated Electrical Team Budget 2015-2016

Table-4: Initial Expense Report

Estimated Budget 2015-2016

Part Name Part Number Quantity Unit Price Total Cost Vendor

USB panel mount 1195-3481-ND 2
 $

21.65
 $

43.30

Digikey

SMA panel mount ACX1244-ND 20
 $

7.22
 $

144.44

3” SMA cable 744-1446-ND 20
 $

18.53
 $

370.50

12” USB type b cable UR022-001-ND 1
 $

4.49
 $

4.49

VGA cable 3’ TL651-ND 2
 $

10.32
 $

20.64

Power Cable CP-2224-ND 1
 $

3.61
 $

3.61

Power block T1203-P5P-ND 1
 $

24.65
 $

24.65

Power Connection CP-064A-ND 1
 $

2.70
 $

2.70

HMC-C011 SPDT Switch 1127-1638 -ND 1
 $

1,652.45
 $

1,652.45

558.02, 11%

$2,261.24 , 45%

68.25, 2%

2112.49, 42%

Estimated Electrical Team Budget 2015-2016

Component Box Assembly

Electrical Hardware

Electrical Test Equipment

Remaining

Synthetic Aperture Radar ECE Team 11 Spring 2016

61

Conductive Foam 6180T43 3
 $

45.98
 $

137.94

McMasterCarr

Conductive Foam 6180T18 1
 $

56.07
 $

56.07

Conductive Sheet 6021T13 1
 $

39.07
 $

39.07

Latches 13435A31 2
 $

12.78
 $

25.56

Aluminum Sheet 89015K59 1
 $

219.47
 $

219.47

D-Sub Panel Mount 093-112 1
 $

20.42
 $

20.42
Parts Express

Anti-Static Wrist Strap EC-900-022 1
 $

6.99
 $

6.99
FourAker

Electronics
LED Screwdriver EC-SD-804-1 1

 $
3.99

 $
3.99

Color Tape 67-LT-5CP 1
 $

6.55
 $

6.55

VmodBB - VHDC-
Breadboard

Vmod-BB 1
 $

57.71
 $

57.71
Diligent

Times Mic LMR-100A-
PVC

16346 39
 $

0.49
 $

19.11

The Antenna
Farm

RFI RSA-3050-B 33054 2
 $

4.95
 $

9.90

Install Conn Dual DCI 1
 $

8.00
 $

8.00

Shipping 1
 $

9.95
 $

9.95

The allocated $5,000 budget was not exceeded, the remaining funds for the team is $4,191.38. This

is largely due to the fact that an SPDT switch purchased from Digikey by last year’s team was sent back

to Digikey to be repaired when in fact they determined the part was defected and offered a refund of

$2,493.27. A new SPDT switch was purchased for $1,652.45. Below in figure-45 is a pie chart displaying

the breakdown of the budget showing that with the reimbursement from Digikey, there is a remainder of

84%. Most of the oversights in the initial budget were the electrical connectors since rewiring was one of

the last processes and therefore unexpected purchases needed to be made. In table-5 is the detailed expense

report that is segmented by vendor. Preferred vendors such as Digikey were utilized as often as possible

however local stores were also visited when possible in order to increase productivity time.

Synthetic Aperture Radar ECE Team 11 Spring 2016

62

Figure-45: Final Electrical Team Budget 2015-2016

Table-5: Final Expense Report

Budget 2015-2016

Part Name Part Number Quantity Unit Price Total Cost Vendor

USB panel mount 1195-3481-ND 2
 $

21.65

 $

43.30

Digikey

SMA panel mount ACX1244-ND 20
 $

7.22

 $

144.44

3” SMA cable 744-1446-ND 20
 $

18.53

 $

370.50

12” USB type b cable UR022-001-ND 1
 $

4.49

 $

4.49

VGA cable 3’ TL651-ND 2
 $

10.32

 $

20.64

$688.97 , 14%

$84.79 , 1%
$34.86 , 1%

$4,191.38 , 84%

Final Electrical Team Budget 2015-2016

Component Box Assembly

Electrical Hardware

Electrical Test Equipment

Remaining

Synthetic Aperture Radar ECE Team 11 Spring 2016

63

Power Cable CP-2224-ND 1
 $

3.61

 $

3.61

Power block T1203-P5P-ND 1
 $

24.65

 $

24.65

Power Connection CP-064A-ND 1
 $

2.70

 $

2.70

HMC-C011 SPDT

Switch
1127-1638 -ND 1

 $

1,652.45

 $

1,652.45

Jack Banana

Connector
J152-ND 1

 $

0.78

 $

0.78

USB 2.0 Male 3M AE10625-ND 2
 $

3.98

 $

7.96

Tax/Shipping 1
 $

4.16

 $

4.16

HMC-C058 SPDT

Switch
1127-1646-ND 1

 $

(2,493.27)

 $

(2,493.27)

Conductive Foam 6180T43 3
 $

45.98

 $

137.94

McMasterCarr

Conductive Foam 6180T18 1
 $

56.07

 $

56.07

Conductive Sheet 6021T13 1
 $

39.07

 $

39.07

Latches 13435A31 2
 $

12.78

 $

25.56

Aluminum Sheet 89015K59 1
 $

219.47

 $

219.47

D-Sub Panel Mount 093-112 1
 $

20.42

 $

20.42
Parts Express

Anti-Static Wrist Strap EC-900-022 1
 $

6.99

 $

6.99
FourAker Electronics

Synthetic Aperture Radar ECE Team 11 Spring 2016

64

LED Screwdriver EC-SD-804-1 1
 $

3.99

 $

3.99

Color Tape 67-LT-5CP 1
 $

6.55

 $

6.55

VmodBB - VHDC-

Breadboard
Vmod-BB 1

 $

57.71

 $

57.71
Diligent

Times Mic LMR-100A-

PVC
16346 39

 $

0.49

 $

19.11

The Antenna Farm

RFI RSA-3050-B 33054 2
 $

4.95

 $

9.90

Install Conn Dual DCI 1
 $

8.00

 $

8.00

Shipping 1
 $

9.95

 $

9.95

Startech Self Adhesive

Cable Tie Mounts HC102
1

 $

9.99

 $

9.99
Amazon

Thin Self-Gripping

Cable Ties -
1

 $

7.34

 $

7.34

Metal Oxide Resistors
71-

RNX0381M00DHLB
5

 $

3.31

 $

16.55

Mouser

Electronics

High Frequency/RF

Resistors

71-

FC0603E50R0BTBST1
5

 $

2.10

 $

10.50

High Frequency/RF

Resistors
71-FC0402H75R0BTS 5

 $

4.86

 $

24.30

Tax/Shipping

1
 $

7.99

 $

7.99

SMA Female-Female

Cable
PE3C3043-336 1

 $

258.27

 $

258.27
Pasternack

Synthetic Aperture Radar ECE Team 11 Spring 2016

65

EMS Unassembled

Female Connectors

Futaba J

EMOM0116 3
 $

11.59

 $

34.77

TowerHobbies
EMS Unassembled

Male Connectors

Futaba J

EMOM0115 3
 $

10.59

 $

31.77

VII. Conclusion

7.1 Accomplishments

The 2016 SAR team designed and implemented a far more practical, modular SAR Imager that can be

foundational for future projects. Mechanically, the team reduced the weight of the frame by over 100

pounds, added mobility options and noticeably improved the stability of the overall structure. The updated

component housing was designed and fabricated in such a way that this SAR system, at least aesthetically,

is closer to what the actual design for market would be, while more importantly providing greater shielding

against electromagnetic interference or leakage coming in or out of the housing. This component housing

is also considerably safer and more mobile than the previous L shaped design, along with a greater ease

of access for testing the electronic system, as well as to more easily assemble and connect the component

housing with the transmit and receive horns on the actual frame. On the RF side of the project, the system

can now generate its own signal for transmit and receive through use of the voltage controlled oscillator,

without the need for any external signal source to do this in its stead. The signal path power has been

better optimized for both transmit and receive, with less saturation and compression of components,

whereas the previous year, this could be deemed questionable. Great strides with the FPGA software and

coding have been made this year, with code being written to perform all of the system controls for

switching between different paths, as well as between different antenna transmit and receive pairs. ADC

logic has been implemented to read the voltage values coming from the IQ demodulator, representing the

reflected signals out at the scene, and are converted to a digital word for use in processing on the FPGA

board. Advancements with the dedicated VGA display have also been made to show progress to reaching

the end goal of a standalone radar system that requires no external PC for operation, processing and

Synthetic Aperture Radar ECE Team 11 Spring 2016

66

detection. There was also manual switching logic created for the antenna paths, along with some great

work that has been done with reading and writing data to the on board memory of the FPGA Finally,

achievements with the signal processing have certainly been attained. Specifically, improving upon the

slow, archaic signal processing implementing the Discrete Fourier Transform using excel has been

completely reworked. All signal processing has been successfully coded into custom MATLAB functions,

allowing for computation of the Fourier Transform for any reflected signals from the system. This also

includes code for calibration and error correction due to the issue of operating in the near field, rather than

the far field, fixing some issues with a reflector being targeted at too extreme of an angle. In addition,

logic and code has been successfully written to convert the digital data of the reflected I and Q values that

was stored on the FPGA memory, and bring these values to MATLAB as a DC voltage value that can be

used for processing. This MATLAB code will serve as a launching pad for any future team that will

implement signal processing natively on the FPGA, which has also been started with work on FFT

algorithms being researched and presented, along with VHDL code being provided in the form of an IP

Core provided by Xilinx. Overall, a functioning radar system that is structurally sound has been realized,

but can certainly be improved upon with future iterations of the project.

7.2 Proposed Improvements

The most important improvement the team would suggest going forward is to evaluate the design for

the step-up voltage circuit and get a prototype implemented early on. Getting the FPGA to drive the SPDT

switch should be a top priority since it would eliminate the reliance on an external pulse generator.

Implementing the isolation switch proposed in Section 6.2.4.3 and then evaluating its effectiveness

would be a very valuable contribution to the project that can be done relatively simply and early in the

semester next year.

More data needs to be taken both indoors and outdoors for each angle of arrival there is a basis function

for. Once that data is in hand, its analysis should inform future decision-making regarding the scope of

the project. It seems an honest evaluation of the SAR’s feasibility in indoor environments is in order.

Be that as it may, subsequent teams should consider conducting signal path bench testing as early in

the first semester as possible so that they can become familiarized enough with the system.

Synthetic Aperture Radar ECE Team 11 Spring 2016

67

7.3 Project Future

Future iterations of the project could include replacing the plastic pyramidal horn antennas with patch

antennas. Inquiries have been made, and it is possible to have patch antennas fabricated at the College of

Engineering with the cooperation of certain graduate students. Designing these antennas would be a

valuable learning challenge and expose undergraduates to collaboration with graduate students.

Implementing a phase slope generator using coaxial line stretchers could be considered so a target can

be synthesized.

To implement a neural network in the future is to create a “smarter” system that uses pattern

recognition for improved image formation. By taking a lot of different measurements with the system, for

many different angles away from boresight, then implementing this into a prewritten neural network

algorithm given in MATLAB, the system can learn to recognize targets at specific angles with greater

accuracy. This I and Q data taken for many different scenarios will be saved into a large matrix, and then

simply run into the neural network algorithm in MATLAB. This algorithm simply contains another large

matrix that then gets multiplied by the test data, and will help with the pattern recognition for image

formation, for any of the 16 bin angles at the scene. The senior design professor, Dr Jerris Hooker, will

assist in implementing such a network.

VIII. Team

Jordan Bolduc – Jordan is graduating FSU with his B.S. in Electrical Engineering in April 2016. He

is going into his professional career in the upcoming months, most likely accepting a position as an

electronics engineer with the federal government, helping serve the United States Navy, contingent upon

receiving his Secret security clearance. Eventually, Jordan wants to do work in signal processing with a

defense contractor or an audio processing company such as Dolb

Synthetic Aperture Radar ECE Team 11 Spring 2016

A-1

Appendix A: Test Plan Documentation

Test Identifier Title Description Comments

FAM-000 Test Equipment

Familiarization &

Safety

Feed Pulse

Generator directly to

Spectrum Analyzer.

Study Span, ResBW,

PRF spectral lines,

envelope, etc.

COMPLETE: PASS

CTRL-001 FPGA ADC Input

Voltage

Apply voltage from

0 – 3.3 V to FPGA

PMOD pins & verify

12-bit hex words on

7-seg display.

COMPLETE: PASS

DISP-015 Display Verification Demonstrate using

display as volt meter

for the AtoD signal

from test CTRL-001

COMPLETE: PASS

HW-016 SPDT Hardware TS Use Pulse Gen &

Spec Anny to verify

switch function

COMPLETE: FAIL, Resolved

2 trials show no switching capability.

Switch replaced & verified.

CTRL-002 FPGA Switching

Logic

Use slider switches

on FPGA board to

simulate every

switching state.

COMPLETE: PASS

TXRF-003, A-F

TX Output Power &

Gain (Constant)

Verify RF power of

each component

along TX Path to PA

w/constant source.

No Switching, No

Timing.

COMPLETE: PASS

Post-Migration: PASS

TXLO-004, A-D LO Output Power &

Gain (Constant)

Verify IF power of

each component

along LO Path up to

COMPLETE: PASS

Post-Migration: PASS

Synthetic Aperture Radar ECE Team 11 Spring 2016

A-2

IQ Demod

w/constant source.

No Switching, No

Timing.

RXRF-005, A-D

RX Power & Gain

(Constant)

Verify RF power and

gain from BPF to IQ

Demod w/constant

source. No

Switching, No

Timing.

COMPLETE: PASS

Post-Migration: PASS

TXIF-006 SPDT Switching

(Manual)

Use FPGA slider

switch controls to

verify both switch

paths.

Need step-up circuit so FPGA output can

drive switch

TXRF-007 SP4T Switching

(Manual)

Use FPGA slider

switch controls to

verify all switch

paths.

COMPLETE: PASS

Post-Migration: PASS

RXRF-008 SP16T Switching

(Manual)

Use FPGA slider

switch controls to

verify all switch

paths.

COMPLETE: PASS

Post-Migration: PASS

TXIF-009 VCO Generate 5GHz, -

4dBm signal from

VCO.

COMPLETE: PASS

VCO 1 & 2 operational

CTRL-010 FPGA Fast Pulse Verify FPGA

50MHz, 0.333 duty

operational pulse.

Timing and duty: PASS.

Not enough voltage output to drive SPDT

TXIF-011 IF Output Power And

Pulse Fidelity of

SPDT Switch w/ VCO

& FPGA fast pulse

Verify output power

and pulse fidelity to

TX/LO common

SPDT using VCO

and FPGA fast

pulse.

PASS with VCO and 25MHz pulse

generator

LORF-012, A-D

LO Power & Pulse

Fidelity w/ VCO &

FPGA fast pulse

Verify RF power &

pulse fidelity along

LO Path using VCO

PASS with VCO and 25MHz pulse

generator

Synthetic Aperture Radar ECE Team 11 Spring 2016

A-3

and FPGA fast

pulse.

TXRF-013, A-J

TX Output Power &

Pulse Fidelity

Verify RF power &

pulse fidelity along

TX Path using VCO

and FPGA fast pulse

PASS with VCO and 25MHz pulse

generator

RXRF-014

RX Gain & Pulse

Fidelity

Verify RF power and

gain to IQ Demod

(including SP16T)

using VCO and

FPGA fast pulse.

PASS with VCO and 25MHz pulse

generator

TXRX-015

Tx-Rx Delay Line

Hard Loopback

Tx/Rx hard loop

with delay-matched

coax run & line

extender.

COMPLETE: PASS

Signal path verified for completeness and

loss, NOT for fast pulse operation.

Post-Migration: PASS

IQDM-016 IQ Demodulator

Voltage Test

Verify voltage from

each IQ Demod pin

to FPGA PMODs

w/Delay Line

COMPLETE: PASS

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-1

Appendix B: VHDL Code Modules

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-2

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-3

--LIBRARY---

Library ieee;

Use ieee.std_logic_1164.all;

Use ieee.std_logic_unsigned.all;

Use ieee.std_logic_arith.all;

--use sar_design.all;

PACKAGE SAR_DESIGN is

--1.

component segdriver is

Port (

 CLK : In std_logic; --100 MHZ

 RST : In std_logic; --button(0) B8

 sig_in : In Std_logic_vector(15 DOWNTO 0); -- 16 bits signal for 7 segments display

 seg : out STD_logic_vector(6 downto 0); -- 8 bits per anodes

 an : out std_logic_vector(3 downto 0));

end component;

--2.

component memdriver is

PORT

 (

 clk_i : in std_logic;

Figure B.1- Switches timing diagram

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-4

 RST : in std_logic;

 in_out : in std_logic;

 adr_in : in STD_LOGIC_VECTOR(22 downto 0);

 MemAdr : out std_logic_vector (23 downto 1); -- Address

 RAM_OEb : out std_logic; --

Output Enable

 RAM_WEb : out std_logic; --

Write Enable

 RAMAdv : out std_logic; -- Address

Valid

 RAMClk : out std_logic; -- RAM clock

 RAMCre : out std_logic; -- Control

Register enable

 RAM_CEb : out std_logic; -- Chep

Enable

 RAM_LB : out std_logic; --

Lower Byte

 RAM_UB : out std_logic; -- Upper Byte

 MemDB_io : inout std_ulogic_vector (15 downto 0); -- Bidirectional data

 MemDB_in : in std_ulogic_vector (15 downto 0);

 MemDB_out: out std_ulogic_vector (15 downto 0)

);

end component;

--3.

 COMPONENT comp_50Mhz is

 PORT(

 CLK : IN std_logic;

 RST : IN std_logic;

 CLK_50Mhz_out : OUT std_logic

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-5

);

 END COMPONENT;

--4.

function multiply (X,Y : std_logic_vector(12 downto 0)) return std_logic_vector;

--5.

function ADD (X,Y : std_logic_vector(24 downto 0)) return std_logic_vector;

--6.

COMPONENT data_processing is

PORT(

 clk : IN std_logic;

 enable : IN std_logic;

 MemDB_in : IN std_logic_vector(15 downto 0);

 MemDB_io : INOUT std_logic_vector(15 downto 0);

 MemAdr : OUT std_logic_vector(23 downto 1);

 RAM_OEb : OUT std_logic;

 RAM_WEb : OUT std_logic;

 RAMAdv : OUT std_logic;

 RAMClk : OUT std_logic;

 RAMCre : OUT std_logic;

 RAM_CEb : OUT std_logic;

 RAM_LB : OUT std_logic;

 RAM_UB : OUT std_logic

);

END COMPONENT;

--7.

TYPE ONE_BY_16 is Array (1 to 16) of STD_LOGIC_vector(24 downto 0);

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-6

--Constant for Memory Address

-- i will be store 0 .. 15

-- i-bar will be stored 16 .. 31

-- q will be store 32 .. 47

-- q-bar will be stored 48 .. 63

TYPE MEM_ADDRESS is Array (1 to 64) of STD_LOGIC_vector(23 downto 0);

constant MEM_ADR : MEM_ADDRESS := (

--I

 x"000000",x"000001",x"000002",x"000003",x"000004",x"000005",x"000006",x"000007",x"000

008",x"000009",x"00000a",x"00000b",x"00000c",x"00000d",

 x"00000e",x"00000f",

--I-bar

 x"000010",x"000011",x"000012",x"000013",x"000014",x"000015",x"000016",x"000017",x"000

018",x"000019",x"00001a",x"00001b",x"00001c",x"00001d",

 x"00001e",x"00001f",

--Q

 x"000020",x"000021",x"000022",x"000023",x"000024",x"000025",x"000026",x"000027",x"000

028",x"000029",x"00002a",x"00002b",x"00002c",x"00002d",

 x"00002e",x"00002f",

--Q- bar

 x"000030",x"000031",x"000032",x"000033",x"000034",x"000035",x"000036",x"000037",x"000

038",x"000039",x"00003a",x"00003b",x"00003c",x"00003d",

 x"00003e",x"00003f"

);

--Constant for BASIS VALUES

TYPE BASIS is Array (1 to 16, 1 to 16) of STD_LOGIC_vector(15 downto 0);

constant Basis_real : Basis := (

-- ("xxxx" , "xxxx", "xxxx", "xxxx", "xxxx", "xxxx",

 "xxxx", "xxxx", "xxxx", "xxxx", "xxxx", "xxxx",

 "xxxx", "xxxx", "xxxx", "xxxx")

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-7

 (x"14C2" ,x"047D" ,x"140f" ,x"0379" ,x"12c4" ,x"01f2"

 ,x"1110" ,x"0022" ,x"00cb" ,x"11b3" ,x"0289" ,x"1349"

 ,x"03e7" ,x"1462" ,x"04b2" ,x"14d7"),

 (x"140c" ,x"01e7" ,x"00dd" ,x"135a" ,x"04b9" ,x"148a" ,x"02d9" ,x"1038"

 ,x"127d" ,x"045d" ,x"14ce" ,x"03a6" ,x"114b" ,x"1180" ,x"03c9" ,x"14d4"),

 (x"12b9" ,x"11cc" ,x"04bb" ,x"1385" ,x"10ca" ,x"0466"

 ,x"1427" ,x"0042" ,x"03dc" ,x"1498" ,x"014a" ,x"0324"

 ,x"14d2" ,x"0243" ,x"0246" ,x"14d2"),

 (x"10fb" ,x"1474" ,x"02c6" ,x"0355" ,x"141f" ,x"11ad"

 ,x"04cb" ,x"1044" ,x"14b1" ,x"0227" ,x"03d1" ,x"13b2"

 ,x"1255" ,x"04a2" ,x"0075" ,x"14d2"),

 (x"00ea" ,x"1481" ,x"129f" ,x"0382" ,x"03f2" ,x"1205"

 ,x"14b6" ,x"003c" ,x"04cc" ,x"0194" ,x"1434" ,x"132c"

 ,x"0300" ,x"044e" ,x"1160" ,x"14d4"),

 (x"02ac" ,x"11e6" ,x"14c5" ,x"135d" ,x"010e" ,x"0487"

 ,x"03f0" ,x"1030" ,x"1425" ,x"1463" ,x"10b3" ,x"039e"

 ,x"04af" ,x"018d" ,x"12fa" ,x"14d6"),

 (x"0405" ,x"01d3" ,x"10fe" ,x"1379" ,x"14c5" ,x"1472"

 ,x"129c" ,x"001e" ,x"02cd" ,x"0488" ,x"04b8" ,x"034c"

 ,x"00c1" ,x"120c" ,x"1427" ,x"14d8"),

 (x"04c0" ,x"0479" ,x"0405" ,x"0369" ,x"02ac" ,x"01d3" ,x"00e9"

 ,x"100b" ,x"10fe" ,x"11e7" ,x"12be" ,x"1379" ,x"1411"

 ,x"1482" ,x"14c5" ,x"14d9"),

-- symmetry

 (x"04c0" ,x"0479" ,x"0405" ,x"0369" ,x"02ac" ,x"01d3" ,x"00e9"

 ,x"100b" ,x"10fe" ,x"11e7" ,x"12be" ,x"1379" ,x"1411"

 ,x"1482" ,x"14c5" ,x"14d9"),

 (x"0405" ,x"01d3" ,x"10fe" ,x"1379" ,x"14c5" ,x"1472"

 ,x"129c" ,x"001e" ,x"02cd" ,x"0488" ,x"04b8" ,x"034c"

 ,x"00c1" ,x"120c" ,x"1427" ,x"14d8"),

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-8

 (x"02ac" ,x"11e6" ,x"14c5" ,x"135d" ,x"010e" ,x"0487"

 ,x"03f0" ,x"1030" ,x"1425" ,x"1463" ,x"10b3" ,x"039e"

 ,x"04af" ,x"018d" ,x"12fa" ,x"14d6"),

 (x"00ea" ,x"1481" ,x"129f" ,x"0382" ,x"03f2" ,x"1205"

 ,x"14b6" ,x"003c" ,x"04cc" ,x"0194" ,x"1434" ,x"132c"

 ,x"0300" ,x"044e" ,x"1160" ,x"14d4"),

 (x"10fb" ,x"1474" ,x"02c6" ,x"0355" ,x"141f" ,x"11ad"

 ,x"04cb" ,x"1044" ,x"14b1" ,x"0227" ,x"03d1" ,x"13b2"

 ,x"1255" ,x"04a2" ,x"0075" ,x"14d2"),

 (x"12b9" ,x"11cc" ,x"04bb" ,x"1385" ,x"10ca" ,x"0466"

 ,x"1427" ,x"0042" ,x"03dc" ,x"1498" ,x"014a" ,x"0324"

 ,x"14d2" ,x"0243" ,x"0246" ,x"14d2"),

 (x"140c" ,x"01e7" ,x"00dd" ,x"135a" ,x"04b9" ,x"148a" ,x"02d9" ,x"1038"

 ,x"127d" ,x"045d" ,x"14ce" ,x"03a6" ,x"114b" ,x"1180" ,x"03c9" ,x"14d4"),

 (x"14C2" ,x"047D" ,x"140f" ,x"0379" ,x"12c4" ,x"01f2"

 ,x"1110" ,x"0022" ,x"00cb" ,x"11b3" ,x"0289" ,x"1349"

 ,x"03e7" ,x"1462" ,x"04b2" ,x"14d7")

);

constant Basis_ima : Basis := (

-- ("xxxx" , "xxxx", "xxxx", "xxxx", "xxxx", "xxxx",

 "xxxx", "xxxx", "xxxx", "xxxx", "xxxx", "xxxx",

 "xxxx", "xxxx", "xxxx", "xxxx")

 (x"0414" ,x"0468" ,x"00af" ,x"13ac" ,x"14a6" ,x"115b"

 ,x"032f" ,x"04cb" ,x"01ff" ,x"12a4" ,x"14d9" ,x"129a"

 ,x"0209" ,x"04cd" ,x"0326" ,x"1166"),

 (x"11ee" ,x"01d2" ,x"12a7" ,x"0361" ,x"13fc" ,x"0470" ,x"14bb"

 ,x"04d8" ,x"14c9" ,x"048a" ,x"1422" ,x"0391" ,x"12e0"

 ,x"0212" ,x"1132" ,x"0045"),

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-9

 (x"12ac" ,x"0475" ,x"14c5" ,x"0381" ,x"1115" ,x"11b4"

 ,x"03eb" ,x"14d8" ,x"0429" ,x"121b" ,x"10a7" ,x"0330"

 ,x"14ad" ,x"049c" ,x"1307" ,x"006f"),

 (x"1404" ,x"0480" ,x"110b" ,x"1356" ,x"04c8" ,x"1209"

 ,x"1281" ,x"04d7" ,x"12ef" ,x"118e" ,x"04ac" ,x"13b1"

 ,x"1088" ,x"0449" ,x"1448" ,x"0084"),

 (x"14c0" ,x"01ea" ,x"03f9" ,x"1385" ,x"128f" ,x"048c"

 ,x"00b8" ,x"14d8" ,x"013b" ,x"0457" ,x"12fd" ,x"1324"

 ,x"0440" ,x"016c" ,x"14d4" ,x"0085"),

 (x"14c3" ,x"11cd" ,x"0414" ,x"0357" ,x"12d1" ,x"1469"

 ,x"0125" ,x"04d7" ,x"00af" ,x"1496" ,x"126c" ,x"03aa"

 ,x"03ce" ,x"123b" ,x"14a7" ,x"0078"),

 (x"140c" ,x"1476" ,x"10e1" ,x"037e" ,x"04ba" ,x"01b9"

 ,x"12d4" ,x"14d9" ,x"1285" ,x"0210" ,x"04cc" ,x"0339"

 ,x"113d" ,x"1498" ,x"13d4" ,x"005e"),

 (x"12b5" ,x"147e" ,x"14bf" ,x"1363" ,x"10e0" ,x"01ef"

 ,x"0416" ,x"04d8" ,x"03f4" ,x"01b7" ,x"111b" ,x"138d"

 ,x"14ca" ,x"1466" ,x"1282" ,x"003c"),

 (x"10f4" ,x"11de" ,x"12b5" ,x"1372" ,x"140c" ,x"147e"

 ,x"14c3" ,x"14d9" ,x"14bf" ,x"1476" ,x"1400" ,x"1363"

 ,x"12a4" ,x"11cb" ,x"10e0" ,x"0014"),

 (x"00f3" ,x"01dd" ,x"02b4" ,x"0371" ,x"040b" ,x"047d"

 ,x"04c2" ,x"04d8" ,x"04be" ,x"0475" ,x"03ff" ,x"0362"

 ,x"02a3" ,x"01ca" ,x"00df" ,x"1015"),

 (x"02b4" ,x"047d" ,x"04be" ,x"0362" ,x"00df" ,x"11f0"

 ,x"1417" ,x"14d9" ,x"13f5" ,x"11b8" ,x"011a" ,x"038c"

 ,x"04c9" ,x"0465" ,x"0281" ,x"103d"),

 (x"040b" ,x"0475" ,x"00e0" ,x"137f" ,x"14bb" ,x"11ba"

 ,x"02d3" ,x"04d8" ,x"0284" ,x"1211" ,x"14cd" ,x"133a"

 ,x"013c" ,x"0497" ,x"03d3" ,x"105f"),

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-10

 (x"04c2" ,x"01cc" ,x"1415" ,x"1358" ,x"02d0" ,x"0468"

 ,x"1126" ,x"14d8" ,x"10b0" ,x"0495" ,x"026b" ,x"13ab"

 ,x"13cf" ,x"023a" ,x"04a6" ,x"1079"),

 (x"04bf" ,x"11eb" ,x"13fa" ,x"0384" ,x"028e" ,x"148d"

 ,x"10b9" ,x"04d7" ,x"113c" ,x"1458" ,x"02fc" ,x"0323"

 ,x"1441" ,x"116d" ,x"04d3" ,x"1086"),

 (x"0403" ,x"1481" ,x"010a" ,x"0355" ,x"14c9" ,x"0208"

 ,x"0280" ,x"14d8" ,x"02ee" ,x"018d" ,x"14ad" ,x"03b0"

 ,x"0087" ,x"144a" ,x"0447" ,x"1085"),

 (x"02ab" ,x"1476" ,x"04c4" ,x"1382" ,x"0114" ,x"01b3"

 ,x"13ec" ,x"04d7" ,x"142a" ,x"021a" ,x"00a6" ,x"1331"

 ,x"04ac" ,x"149d" ,x"0306" ,x"1070")

);

--8. Analog to digital conversion with negative reference

COMPONENT A_TO_D is

PORT(

 CLK : IN std_logic;

 RST : IN std_logic;

 SDATA1 : IN std_logic;

 SDATA2 : IN std_logic;

 SDATA3 : IN std_logic;

 SDATA4 : IN std_logic;

 START : IN std_logic;

 SCLK1 : OUT std_logic;

 nCS1 : OUT std_logic;

 SCLK2 : OUT std_logic;

 nCS2 : OUT std_logic;

 I : out std_logic_vector(11 downto 0);

 I_bar : out std_logic_vector(11 downto 0);

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-11

 Q : out std_logic_vector(11 downto 0);

 Q_bar :out std_logic_vector(11 downto 0);

 DONE1 : OUT std_logic;

 DONE2 : OUT std_logic

);

END COMPONENT;

--9. DEBOUNCE circuit is important when using switches and push button

component Debounce is

 Port (INP : in STD_LOGIC_VECTOR (12 downto 0);

 CCLK : in STD_LOGIC;

 rst : in STD_LOGIC;

 OUTP : out STD_LOGIC_VECTOR (12 downto 0));

end component;

end SAR_DESIGN;

Package body SAR_DESIGN is

-- MULTIPLICATION

 function multiply (X,Y : std_logic_vector(12 downto 0)) return std_logic_vector is

 variable result : std_logic_vector(24 downto 0);

 begin

 result(24):= x(12) xor y(12);

 result(23 downto 0):= x(11 downto 0)* y(11 downto 0);

 return result(24 downto 0);

 end multiply;

-- ADDITION

 function ADD (X,Y : std_logic_vector(24 downto 0)) return std_logic_vector is

 variable result : std_logic_vector(24 downto 0);

 begin

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-12

 IF (X(24) = Y(24)) THEN

 RESULT := X(24) & (X(23 DOWNTO 0) + Y(23 DOWNTO 0));

 ELSIF (X(23 DOWNTO 0) >= Y(23 DOWNTO 0)) THEN

 RESULT := X(24) & (X(23 DOWNTO 0) - Y(23 DOWNTO 0));

 ELSE

 RESULT := Y(24) & (Y(23 DOWNTO 0) - X(23 DOWNTO 0));

 END IF;

 return result(24 downto 0);

 end ADD;

end SAR_DESIGN;

--------------------------------ANALOG TO DIGITAL CONVERTER---------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.all;

entity A_TO_D is

 Port (

 --General usage

 CLK : in std_logic;

 RST : in std_logic;

 --Pmod interface signals for first adc

 SDATA1 : in std_logic;

 SDATA2 : in std_logic;

 SCLK1 : out std_logic;

 nCS1 : out std_logic;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-13

 --Pmod interface signals for second adc

 SDATA3 : in std_logic;

 SDATA4 : in std_logic;

 SCLK2 : out std_logic;

 nCS2 : out std_logic;

 START : in std_logic;

 --ouput

 I : out std_logic_vector(11 downto 0);

 I_bar : out std_logic_vector(11 downto 0);

 Q : out std_logic_vector(11 downto 0);

 Q_bar : out std_logic_vector(11 downto 0);

 DONE1 : out std_logic; -- adc1

 DONE2 : out std_logic -- adc2

);

end A_TO_D ;

architecture AD of A_TO_D is

type states is (Idle,

 ShiftIn,

 SyncData);

 signal current_state : states;

 signal next_state : states;

 signal temp1 : std_logic_vector(15 downto 0);

 signal temp2 : std_logic_vector(15 downto 0);

 signal temp3 : std_logic_vector(15 downto 0);

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-14

 signal temp4 : std_logic_vector(15 downto 0);

 signal clk_div : std_logic;

 signal clk_counter : std_logic_vector(1 downto 0);

 signal shiftCounter : std_logic_vector(3 downto 0) := x"0";

 signal enShiftCounter: std_logic;

 signal enParalelLoad : std_logic;

 signal DATA1 : std_logic_vector(11 downto 0);

 signal DATA2 : std_logic_vector(11 downto 0);

 signal DATA3 : std_logic_vector(11 downto 0);

 signal DATA4 : std_logic_vector(11 downto 0);

begin

I<=DATA1;

I_bar<=DATA2;

Q<=DATA3;

Q_bar<=DATA4;

--

-- Title : clock divider process

--

-- Description : This is the process that will divide the 100 MHz clock

-- down to a clock speed of 25 MHz to drive the ADC7476 chip.

--

 clock_divide : process(rst,clk)

 begin

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-15

 if rst = '1' then

 clk_counter <= "00";

 elsif (clk = '1' and clk'event) then

 clk_counter <= clk_counter + '1';

 end if;

 end process;

 clk_div <= clk_counter(1);

 SCLK1 <= not clk_counter(1);

 clk_div <= clk_counter(1);

 SCLK2 <= not clk_counter(1);

--

-- Title : counter

--

-- Description: This is the process were the converted data will be colected and

-- output.When the enShiftCounter is activated, the 16-bits of data

-- from the ADC7476 chips will be shifted inside the temporary

-- registers. A 4-bit counter is used to keep shifting the data

-- inside temp1 and temp2 for 16 clock cycles. When the enParalelLoad

-- signal is generated inside the SyncData state, the converted data

-- in the temporary shift registers will be placed on the outputs

-- DATA1 and DATA2.

--

counter : process(clk_div, enParalelLoad, enShiftCounter)

 begin

 if (clk_div = '1' and clk_div'event) then

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-16

 if (enShiftCounter = '1') then

 temp1 <= temp1(14 downto 0) & SDATA1;

 temp2 <= temp2(14 downto 0) & SDATA2;

 temp3 <= temp3(14 downto 0) & SDATA3;

 temp4 <= temp4(14 downto 0) & SDATA4;

 shiftCounter <= shiftCounter + '1';

 elsif (enParalelLoad = '1') then

 shiftCounter <= "0000";

 DATA1 <= temp1(11 downto 0);

 DATA2 <= temp2(11 downto 0);

 DATA3 <= temp3(11 downto 0);

 DATA4 <= temp4(11 downto 0);

 end if;

 end if;

 end process;

--

-- Title : Finite State Machine

--

-- Description: This 3 processes represent the FSM that contains three states.

-- The first state is the Idle state in which a temporary registers

-- are assigned the updated value of the input "DATA1" and "DATA2".

-- The next state is the ShiftIn state where the 16-bits of data

-- from each of the ADCS7476 chips are left shifted in the temp1

-- and temp2 shift registers. The third state, SyncData drives the

-- output signal nCS high for 1 clock period maintainig nCS high

-- also in the Idle state telling the ADCS7476 to mark the end of

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-17

-- the conversion.

-- Notes: The data will change on the lower edge of the clock signal. There

-- is also an asynchronous reset that will reset all signals to

-- their original state.

--

--

-- Title : SYNC_PROC

--

-- Description: This is the process were the states are changed synchronously. At

-- reset the current state becomes Idle state.

--

SYNC_PROC: process (clk_div, rst)

 begin

 if (clk_div'event and clk_div = '1') then

 if (rst = '1') then

 current_state <= Idle;

 else

 current_state <= next_state;

 end if;

 end if;

 end process;

--

-- Title : OUTPUT_DECODE

--

-- Description: This is the process were the output signals are generated

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-18

-- unsynchronously based on the state only (Moore State Machine).

--

OUTPUT_DECODE: process (current_state)

 begin

 if current_state = Idle then

 enShiftCounter <='0';

 DONE1 <='1';

 DONE2 <='1';

 nCS1 <='1';

 nCS2 <='1';

 enParalelLoad <= '0';

 elsif current_state = ShiftIn then

 enShiftCounter <='1';

 DONE1 <='0';

 nCS1 <='0';

 DONE2 <='0';

 nCS2 <='0';

 enParalelLoad <= '0';

 else --if current_state = SyncData then

 enShiftCounter <='0';

 DONE1 <='0';

 nCS1 <='1';

 DONE2 <='0';

 nCS2 <='1';

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-19

 enParalelLoad <= '1';

 end if;

 end process;

--

--

-- Title : NEXT_STATE_DECODE

--

-- Description: This is the process were the next state logic is generated

-- depending on the current state and the input signals.

--

 NEXT_STATE_DECODE: process (current_state, START, shiftCounter)

 begin

 next_state <= current_state; -- default is to stay in current state

 case (current_state) is

 when Idle =>

 if START = '1' then

 next_state <= ShiftIn;

 end if;

 when ShiftIn =>

 if shiftCounter = x"F" then

 next_state <= SyncData;

 end if;

 when SyncData =>

 if START = '0' then

 next_state <= Idle;

 end if;

 when others =>

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-20

 next_state <= Idle;

 end case;

 end process;

end AD;

--SEG DRIVER---

Library ieee;

Use ieee.std_logic_1164.all;

Use ieee.std_logic_unsigned.all;

Use ieee.std_logic_arith.all;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity segdriver is

PORT (

 CLK : In std_logic; --100 MHZ

 RST : In std_logic; --button(0) B8

 sig_in : In Std_logic_vector(15 DOWNTO 0); -- 16 bits signal for 7 segments display

 seg : out STD_logic_vector(6 downto 0); -- 8 bits per anodes

 an : out std_logic_vector(3 downto 0));

end segdriver;

architecture Behavioral of segdriver is

signal KHZpulse, syncr1 : std_logic ;

 --1khz signal

signal clk_counter : std_logic_vector(20 downto

0); -- counter to make the 1khz signal

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-21

signal an_counter : std_logic_vector(1

downto 0); -- counter to help switch the anodes

and seg data

signal char0,char1,char2,char3, indecode :std_logic_vector (3 downto 0);

 -- holding data value for the 15 bits inputs

begin

Process(CLK, sig_in, RST)

Begin

if (RST ='1')then

char0 <= (others=>'0');

char1 <= (others=>'0');

char2 <= (others=>'0');

char3 <= (others=>'0');

elsif rising_edge(clk) then

char0 <=sig_in(3 downto 0);

char1 <=sig_in(7 downto 4);

char2 <=sig_in(11 downto 8);

char3 <=sig_in(15 downto 12);

end if;

End Process;

---CREATING a 1 KHZ clock base on the 100MHZ signal

--The 7segment work best at 60 hz to 1khz

-- to get 1khz clk_counter needs to be 100,000

Process(CLK,RST, KHZpulse)

Begin

if (RST ='1')then

 clk_counter <= (others =>'0');

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-22

elsif rising_edge(clk) then

 if(syncr1 = '1') then

 clk_counter <= (others =>'0');

 else

 clk_counter <= clk_counter + 1;

 end if;

end if;

End Process;

syncr1 <='1' when (clk_counter="000011000011010100000") else '0';

KHZpulse<=syncr1;

--------------lets switch anodes at 1KHz

Process(CLK,RST,KHZpulse)

Begin

if rst = '1' then

 an_counter <= (others=>'0');

elsif rising_edge(CLK) then

 if(KHZpulse = '1') then

 an_counter <= an_counter + 1;

 end if;

end if;

end process;

with an_counter select

an <= "1110" when "00",

 "1101" when "01",

 "1011" when "10",

 "0111" when "11",

 "0000" when others;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-23

with an_counter select

indecode <= char0 when "00",

 char1 when "01",

 char2 when "10",

 char3 when "11",

 "0000" when others;

with indecode select

 seg <="1000000" when x"0",

 "1111001" when x"1",

 "0100100" when x"2",

 "0110000" when x"3",

 "0011001" when x"4",

 "0010010" when x"5",

 "0000010" when x"6",

 "1111000" when x"7",

 "0000000" when x"8",

 "0010000" when x"9",

 "0001000" when x"A",

 "0000011" when x"B",

 "1000110" when x"C",

 "0100001" when x"D",

 "0000110" when x"E",

 "0001110" when x"F",

 "1111111" when others;

end Behavioral;

---Memory Driver--

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-24

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use ieee.numeric_std.all;

use work.sar_design.all;

library UNISIM;

use UNISIM.VComponents.all;

entity memdriver is

PORT

 (

 clk_i : in std_logic;

 RST : in std_logic;

 in_out : in std_logic;

 adr_in : in STD_LOGIC_VECTOR(22 downto 0);

 MemAdr : out std_logic_vector (23 downto 1); -- Address

 RAM_OEb : out std_logic; --

Output Enable

 RAM_WEb : out std_logic; --

Write Enable

 RAMAdv : out std_logic; -- Address

Valid

 RAMClk : out std_logic; -- RAM clock

 RAMCre : out std_logic; -- Control

Register enable

 RAM_CEb : out std_logic; -- Chep

Enable

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-25

 RAM_LB : out std_logic; --

Lower Byte

 RAM_UB : out std_logic; -- Upper Byte

 MemDB_io : inout std_ulogic_vector (15 downto 0); -- Bidirectional data

 MemDB_in : in std_ulogic_vector (15 downto 0);

 MemDB_out: out std_ulogic_vector (15 downto 0)

);

end memdriver;

architecture Behavioral of memdriver is

begin

iobuf_inst: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(0),

 IO=>MemDB_io(0),

 I=> MemDB_in(0),

 T=>in_out -- high: input low: output

);

iobuf_inst1: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-26

 O=>MemDB_out(1),

 IO=>MemDB_io(1),

 I=> MemDB_in(1),

 T=>in_out -- high: input low: output

);

iobuf_inst2: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(2),

 IO=>MemDB_io(2),

 I=> MemDB_in(2),

 T=>in_out -- high: input low: output

);

iobuf_inst3: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(3),

 IO=>MemDB_io(3),

 I=> MemDB_in(3),

 T=>in_out -- high: input low: output

);

iobuf_inst4: IOBUF

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-27

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(4),

 IO=>MemDB_io(4),

 I=> MemDB_in(4),

 T=>in_out -- high: input low: output

);

iobuf_inst5: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(5),

 IO=>MemDB_io(5),

 I=> MemDB_in(5),

 T=>in_out -- high: input low: output

);

iobuf_inst6: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(6),

 IO=>MemDB_io(6),

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-28

 I=> MemDB_in(6),

 T=>in_out -- high: input low: output

);

iobuf_inst7: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(7),

 IO=>MemDB_io(7),

 I=> MemDB_in(7),

 T=>in_out -- high: input low: output

);

iobuf_inst8: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(8),

 IO=>MemDB_io(8),

 I=> MemDB_in(8),

 T=>in_out -- high: input low: output

);

iobuf_inst9: IOBUF

generic map(

 DRIVE =>12,

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-29

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(9),

 IO=>MemDB_io(9),

 I=> MemDB_in(9),

 T=>in_out -- high: input low: output

);

iobuf_inst10: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(10),

 IO=>MemDB_io(10),

 I=> MemDB_in(10),

 T=>in_out -- high: input low: output

);

iobuf_inst11: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(11),

 IO=>MemDB_io(11),

 I=> MemDB_in(11),

 T=>in_out -- high: input low: output

);

iobuf_inst12: IOBUF

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-30

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(12),

 IO=>MemDB_io(12),

 I=> MemDB_in(12),

 T=>in_out -- high: input low: output

);

iobuf_inst13: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(13),

 IO=>MemDB_io(13),

 I=> MemDB_in(13),

 T=>in_out -- high: input low: output

);

iobuf_inst14: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(14),

 IO=>MemDB_io(14),

 I=> MemDB_in(14),

 T=>in_out -- high: input low: output

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-31

);

iobuf_inst15: IOBUF

generic map(

 DRIVE =>12,

 IOSTANDARD=>"DEFAULT",

 SLEW=>"SLOW")

Port map(

 O=>MemDB_out(15),

 IO=>MemDB_io(15),

 I=> MemDB_in(15),

 T=>in_out -- high: input low: output

);

RAMAdv <= '0';

RAMClk <= clk_i;

RAMCre <= '0';

RAM_CEb <= '0';

Ram_LB <='0';

Ram_UB <='0';

process (CLK_i, rst)

begin

if Rst= '1' then

MemAdr <= (others =>'0');

elsif rising_edge(CLK_i) then

memAdr <= ("00000000000000000000000" or Adr_in);

end if;

end process;

---read and write control

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-32

Ram_web <= in_out; -- enable or disable writing

ram_oeb <= not in_out; -- enable or disable output.

end Behavioral;

---TOP_RANGE---

--

-- Company:

-- Engineer:

--

-- Create Date: 12:05:25 04/04/2016

-- Design Name:

-- Module Name: Top_range - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.all;

library sar_design;

use sar_design.SAR_DESIGN.all;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-33

entity Top_range is

port(

 led : out std_logic_vector(7 downto 0); --SATUS MODE

 clk : in std_logic;

 CHANNEL : in std_logic_vector(3 DOWNTO 0); -- which channel is

enable on 7 seg display I, I_bar,Q, Q_bar

 rst : in std_logic;

 sw : in std_logic_vector (5 downto 0);

-- spdt : out std_logic; not used yet because of failure of reliable fast pulse

square wave;

 sp4t : out std_logic_vector(3 downto 0);

 sp16t : out std_logic_vector(15 downto 0);

-----A_D_C PORT---

 SDATA1 : IN std_logic; --I

 SDATA2 : IN std_logic; --I-BAR

 SDATA3 : IN std_logic; --Q

 SDATA4 : IN std_logic; --Q-BAR

 SCLK1 : OUT std_logic;

 nCS1 : OUT std_logic;

 SCLK2 : OUT std_logic;

 nCS2 : OUT std_logic;

----SEGDRIVER--

 seg : out STD_logic_vector(6 downto 0);

 an : out std_logic_vector(3 downto 0);

---MEMDRIVER--

 mem_en : in std_logic;

 MemAdr : out std_logic_vector (23 downto 1); -- Address

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-34

 RAM_OEb : out std_logic;

 -- Output Enable

 RAM_WEb : out std_logic;

 -- Write Enable

 RAMAdv : out std_logic;

 -- Address Valid

 RAMClk : out std_logic;

 -- RAM clock

 RAMCre : out std_logic; --

Control Register enable

 RAM_CEb : out std_logic;

 -- Chep Enable

 RAM_LB : out std_logic;

 -- Lower Byte

 RAM_UB : out std_logic; --

Upper Byte

 MemDB : inout std_ulogic_vector (15 downto 0)-- Bidirectional data

);

end Top_range;

architecture Behavioral of Top_range is

TYPE MODE is (Debug, real_time, reset, idle_debug,idle_real_time, test_idle,

 Memory, memory_idle, memory_adc, LOAD_I,

LOAD_I_BAR,LOAD_Q, LOAD_Q_BAR); -- debug mode

when switches can be used else real mode

SIGNAL pr_state, nx_state : Mode;

SIGNAL TX_RX:STD_LOGIC_VECTOR(5 DOWNTO 0); -- tell which transmit receive pair is active

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-35

SIGNAL SEG_DATA: std_logic_vector(15 downto 0); -- data to go to the 7

segment display

SIGNAL ADC_START: STD_LOGIC; -- CONTROL THE STARTING OF THE ADC : ACTIVE HIGH

SIGNAL ADC_DONE1,ADC_DONE2: STD_LOGIC;-- CONTROL WHEN ADC1 AND ADC2 ARE

DONE;

SIGNAL ADC_DATA1,ADC_DATA2,ADC_DATA3,ADC_DATA4: STD_LOGIC_VECTOR(11

downto 0);-- value out of the ADC1 and ADC2

SIGNAL MEM_CE:STD_LOGIC;-- enable chip or disable chip

SIGNAL MEM_RW:STD_LOGIC; -- read or write from/to the memory

SIGNAL MEM_ADDR: STD_LOGIC_VECTOR(22 downto 0); -- address to memory

SIGNAL MEM_I_DATA,MEM_O_DATA:STD_ULOGIC_VECTOR(15 downto 0);

TYPE DATA16 is Array (1 to 16) of STD_LOGIC_vector(11 downto 0);

SIGNAL I,I_bar,Q,Q_bar : DATA16;

SIGNAL CNT: integer range 1 to 10_000_000;

Signal MEM_hold: integer range 1 to 10_000;

SIGNAL ANTENNA: STD_LOGIC_VECTOR(5 downto 0);

SIGNAL INDEX: integer range 1 to 17;

SIGNAL ANTENNA_REAL_TIME_CLK:STD_LOGIC;

SIGNAL MEG_50HZ: STD_LOGIC;

begin

------COMPONENT INITIALIZATION--

Inst_A_TO_D: A_TO_D PORT MAP(

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-36

 CLK => CLK,

 RST => RST ,

 SDATA1 => SDATA1 ,

 SDATA2 => SDATA2,

 SCLK1 => SCLK1,

 nCS1 => NCS1,

 SDATA3 => SDATA3 ,

 SDATA4 => SDATA4,

 SCLK2 => SCLK2,

 nCS2 => NCS2,

 I=>ADC_DATA1,

 I_bar=>ADC_DATA2,

 Q=>ADC_DATA3,

 Q_bar=>ADC_DATA4,

 START => ADC_START,

 DONE1 => ADC_DONE1,

 DONE2 => ADC_DONE2

);

Inst_segdriver: segdriver PORT MAP(

 CLK =>CLK,

 RST =>RST,

 sig_in=>SEG_DATA,

 seg=> seg,

 an =>an

);

Inst_memdriver: memdriver PORT MAP(

 clk_i => MEG_50HZ,

 RST=> RST,

 in_out=>'0',

 adr_in=> MEM_ADDR,

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-37

 MemAdr=>MemAdr,

 RAM_OEb=>RAM_OEb,

 RAM_WEb=>RAM_WEB,

 RAMAdv=>RAMAdv,

 RAMClk=>RAMCLK,

 RAMCre=> RAMCre,

 RAM_CEb=>RAM_CEb,

 RAM_LB=>RAM_LB,

 RAM_UB=>RAM_UB,

 MemDB_io=>MEMDB,

 MemDB_in=>MEM_I_DATA,

 MemDB_out=>MEM_O_DATA

);

INST_50MEG: comp_50Mhz PORT MAP(

 CLK=>clk,

 RST=>RST,

 CLK_50Mhz_out=>MEG_50HZ

);

--

--For Real time purpose we need a clock this section give a clock that

--switches the antenna one ofter the other one. Antenna count from 1 to 16

--and based on the truth table provided in the final report the TX_RX is

--changing

ANTENNA_CTR:PROCESS(ANTENNA_REAL_TIME_CLK, RST, ANTENNA,Index)

Variable antenna_cnt : integer range 1 to 16;

Variable Index_cnt : integer range 1 to 16;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-38

BEGIN

IF RST = '1' THEN

 ANTENNA_cnt := 1;

 INDEX_cnt := 1;

ELSIF RISING_EDGE(ANTENNA_REAL_TIME_CLK) THEN

 if Index_cnt = 16 then -- index for the i q since

 index_cnt:=1; -- array is used

 else

 index_cnt := index_cnt+1;

 end if;

 if antenna_cnt = 16 then--sixteen values is being collected since we

 antenna_cnt :=1; -- are focusing on only the x-axis for now

 else

 Antenna_cnt := antenna_cnt +1;

 end if;

END IF;

antenna<=std_logic_vector(to_unsigned(antenna_cnt,6));

index<=Index_cnt;

END PROCESS;

--This finite state machine is to describe wether debug mode is on or if

--the radar is taking real data

--

----- LOWER SECTION OF FSM-------------------

PROCESS(CLK,RST,mem_en)

VARIABLE cnt_INT: INTEGER RANGE 1 TO 10_000_000 ;

VARIABLE MEM_HOLD_INT: INTEGER RANGE 1 TO 10_000 ;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-39

BEGIN

 IF RST = '1' then

 pr_state <= reset;

 mem_hold_int :=1;

 CNT_int :=1;

 elsif mem_en = '1' then

 CNT_int :=1;

 pr_state <=memory;

 mem_hold_int :=1;

 ELSIF rising_edge(CLK) then

 if mem_hold = 10_000 then

 mem_hold_int :=1;

 else

 mem_hold_int :=mem_hold_int +1;

 end if;

 if cnt = 10_000_000 then

 cnt_int :=1;

 else

 cnt_int := cnt_int + 1;

 end if;

 pr_state <= nx_state;

 end if;

mem_hold<= mem_hold_int;

cnt<=Cnt_int;

END PROCESS;

-------------------------UPPER SECTION OF FSM-------------------

-----UPPER SECTION OF FSM-------------------

FSM: Process(pr_state, SW, CHANNEL, ADC_DONE1,ADC_DONE2, CNT)

BEGIN

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-40

case pr_state is

when reset =>

 if(SW ="111111") then -- all 5 switches is up means real time data;

 nx_state<= real_time;

 elsif (SW/="111111") then

 nx_state<= debug;

 end if;

when debug =>

 if(SW ="111111") then -- all 5 switches is up means real time data;

 nx_state<= real_time;

 elsif (SW/="111111") then

 nx_state<= idle_debug;

 end if;

when idle_debug =>

 if(ADC_DONE1 = '1') then

 if(SW ="111111") then -- all 5 switches is up means

real time data;

 nx_state<=real_time;

 elsif (SW/="111111") then

 nx_state<= debug;

 end if;

 else

 nx_state<= idle_debug;

 end if;

when real_time=>

 if(SW = "111111") then-- all 5 switches is up means real time data;

 nx_state<= test_idle;

 elsif (SW/="111111") then

 nx_state<= debug;

 end if;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-41

when test_idle=>

 if cnt = 1 then

 nx_state<=Idle_real_time;

 else

 nx_state<= test_idle;

 end if;

when Idle_real_time=>

 if(ADC_DONE1 = '1') then

 if(SW ="111111") then -- all 5 switches is up means

real time data;

 nx_state<=real_time;

 elsif (SW/="111111") then

 nx_state<= debug;

 end if;

 else

 nx_state<= Idle_real_time;

 end if;

when memory=>

 nx_state<= memory_idle;

when memory_idle=>

 if cnt = 1 then

 nx_state<=memory_adc;

 else

 nx_state<= memory_idle;

 end if;

when memory_adc=>

 if(ADC_DONE1 = '1') then

 nx_state<=LOAD_I;

 else

 nx_state<= memory_adc;

 end if;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-42

when LOAD_I=>

 if mem_hold = 1 then

 nx_state<= LOAD_I_BAR;

 else

 nx_state<= LOAD_I;

 end if;

when LOAD_I_BAR=>

 if mem_hold = 1 then

 nx_state<= LOAD_Q;

 else

 nx_state<= LOAD_I_BAR;

 end if;

when LOAD_Q=>

 if mem_hold = 1 then

 nx_state<= LOAD_Q_BAR;

 else

 nx_state<= LOAD_Q;

 end if;

when LOAD_Q_BAR=>

 if mem_hold = 1 then

 IF ANTENNA = "010000" THEN-- CHANGE

WHEN Y-AXIS IS BEING USED

 NX_STATE<=RESET;

 ELSE

 nx_state<= MEMORY;

 END IF;

 else

 nx_state<= LOAD_Q_BAR;

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-43

 end if;

when others => nx_state <=reset;

end case;

end process;

FSM_SIG: process (pr_state, SW, antenna, index,CHANNEL,

ADC_DATA1,ADC_DATA2,ADC_DATA3,ADC_DATA4)

begin

if pr_state = reset then

 SEG_DATA<="0000000000000000";

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

 TX_RX<="111111";

 led<=(others=>'0'); -- status lED

elsif pr_state = debug then

 antenna_REAL_TIME_CLK<='0';

 ADC_START<= '1';

 TX_RX<= SW;

 led<= (others => '0'); -- status lED

 if CHANNEL = "0001" then

 SEG_DATA<="0000000000000000" or ADC_DATA1;

 end if;

 if CHANNEL = "0010" then

 SEG_DATA<="0000000000000000" or ADC_DATA2;

 end if;

 if CHANNEL = "0100" then

 SEG_DATA<="0000000000000000" or ADC_DATA3;

 end if;

 if CHANNEL = "1000" then

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-44

 SEG_DATA<="0000000000000000" or ADC_DATA4;

 end if;

elsif pr_state = Idle_debug then

 antenna_REAL_TIME_CLK<='0';

 ADC_START<= '0';

 TX_RX<= SW;

 led<= (others => '0'); -- status lED

 if CHANNEL = "0001" then

 SEG_DATA<="0000000000000000" or ADC_DATA1;

 end if;

 if CHANNEL = "0010" then

 SEG_DATA<="0000000000000000" or ADC_DATA2;

 end if;

 if CHANNEL = "0100" then

 SEG_DATA<="0000000000000000" or ADC_DATA3;

 end if;

 if CHANNEL = "1000" then

 SEG_DATA<="0000000000000000" or ADC_DATA4;

 end if;

elsif pr_state = real_time then

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

-- led<=(others=>'1');

 led<= "00000000" or antenna; -- status lED

 TX_RX<=antenna;

elsif pr_state = Idle_real_time then

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-45

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

-- led<=(others=>'1');

 led<= "00000000" or antenna; -- status lED

 TX_RX<=antenna;

 I(index)<=ADC_DATA1;

 I_bar(index)<=ADC_DATA2;

 Q(index)<=ADC_DATA3;

 Q_bar(index)<=ADC_DATA4;

 elsif pr_state = test_idle then

 ADC_START<= '1';

-- led<=(others=>'1');

 led<= "00000000" or antenna; -- status lED

 TX_RX<=Antenna;

 antenna_REAL_TIME_CLK<='1';

elsif pr_state = memory then

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='1';

-- led<=(others=>'1');

 led<= "00000000" or antenna; -- status lED

 TX_RX<=antenna;

 elsif pr_state = memory_idle then

 ADC_START<= '1';

 led<= "00000000" or antenna; -- status lED

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-46

 TX_RX<=Antenna;

 antenna_REAL_TIME_CLK<='0';

elsif pr_state = memory_adc then

 ADC_START<= '0';

 I(INDEX)<=ADC_DATA1;

 I_bar(INDEX)<=ADC_DATA2;

 Q(INDEX)<=ADC_DATA3;

 Q_bar(INDEX)<=ADC_DATA4;

 antenna_REAL_TIME_CLK<='0';

-- led<=(others=>'1');

 led<= "00000000" or antenna; -- status lED

 TX_RX<=antenna;

 elsif pr_state = LOAD_I then

 I(INDEX)<=ADC_DATA1;

 Mem_ADDR<=MEM_ADR(48+INDEX)(22 DOWNTO 0);

 Mem_I_data<=STD_ULOGIC_VECTOR(X"0000" or I(INDEX));

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

 elsif pr_state = LOAD_I_BAR then

 I_BAR(INDEX)<=ADC_DATA2;

 Mem_ADDR<=MEM_ADR(16+INDEX)(22 DOWNTO 0);

 Mem_I_data<=STD_ULOGIC_VECTOR(X"0000" or I_BAR(INDEX));

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

 elsif pr_state = LOAD_Q then

 Q(INDEX)<=ADC_DATA3;

 Mem_ADDR<=MEM_ADR(32+INDEX)(22 DOWNTO 0);

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-47

 Mem_I_data<=STD_ULOGIC_VECTOR(X"0000" or Q(INDEX));

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

 elsif pr_state = LOAD_Q_BAR then

 Q_BAR(INDEX)<=ADC_DATA4;

 Mem_ADDR<=MEM_ADR(INDEX)(22 DOWNTO 0);

 Mem_I_data<=STD_ULOGIC_VECTOR(X"0000" or Q_BAR(INDEX));

 ADC_START<= '0';

 antenna_REAL_TIME_CLK<='0';

 end if;

 end process;

--All combination of the sp4t and sp16t is in the following

--this process statement is not related to any thing. it is a

--case statement base of the sw.

--

switching :process(CLK, sw, Tx_RX)

begin

If rising_edge(CLK) then

 if (TX_RX="000000")then

 sp4t<="1111";

 sp16t<="1111111111111111";

 end if;

 --first horizontal direction starts at t1r1-t0r8

 if(TX_RX="000001") then

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-48

 sp4t<="1110";

 sp16t<="1111111111111110";

 elsif(TX_RX="000010") then

 sp4t<="1110";

 sp16t<="1111111111111101";

 elsif(TX_RX="000011") then

 sp4t<="1110";

 sp16t<="1111111111111011";

 elsif(TX_RX="000100") then

 sp4t<="1110";

 sp16t<="1111111111110111";

 elsif(TX_RX="000101") then

 sp4t<="1110";

 sp16t<="1111111111101111";

 elsif(TX_RX="000110") then

 sp4t<="1110";

 sp16t<="1111111111011111";

 elsif(TX_RX="000111") then

 sp4t<="1110";

 sp16t<="1111111110111111";

 elsif(TX_RX="001000") then

 sp4t<="1110";

 sp16t<="1111111101111111";

 ------Other horizontal direction t2r1-t1r8

 elsif(TX_RX="001001") then

 sp4t<="1101";

 sp16t<="1111111111111110";

 elsif(TX_RX="001010") then

 sp4t<="1101";

 sp16t<="1111111111111101";

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-49

 elsif(TX_RX="001011") then

 sp4t<="1101";

 sp16t<="1111111111111011";

 elsif(TX_RX="001100") then

 sp4t<="1101";

 sp16t<="1111111111110111";

 elsif(TX_RX="001101") then

 sp4t<="1101";

 sp16t<="1111111111101111";

 elsif(TX_RX="001110") then

 sp4t<="1101";

 sp16t<="1111111111011111";

 elsif(TX_RX="001111") then

 sp4t<="1101";

 sp16t<="1111111110111111";

 elsif(TX_RX="010000") then

 sp4t<="1101";

 sp16t<="1111111101111111";

 --vertical direction t3r9-t3r16

 elsif(TX_RX="010001") then

 sp4t<="1011";

 sp16t<="1111111011111111";

 elsif(TX_RX="010010") then

 sp4t<="1011";

 sp16t<="1111110111111111";

 elsif(TX_RX="010011") then

 sp4t<="1011";

 sp16t<="1111101111111111";

 elsif(TX_RX="010100") then

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-50

 sp4t<="1011";

 sp16t<="1111011111111111";

 elsif(TX_RX="010101") then

 sp4t<="1011";

 sp16t<="1110111111111111";

 elsif(TX_RX="010110") then

 sp4t<="1011";

 sp16t<="1101111111111111";

 elsif(TX_RX="010111") then

 sp4t<="1011";

 sp16t<="1011111111111111";

 elsif(TX_RX="011000") then

 sp4t<="1011";

 sp16t<="0111111111111111";

 --other vertical direction t3r9-t3r16

 elsif(TX_RX="011001") then

 sp4t<="0111";

 sp16t<="1111111011111111";

 elsif(TX_RX="011010") then

 sp4t<="0111";

 sp16t<="1111110111111111";

 elsif(TX_RX="011011") then

 sp4t<="0111";

 sp16t<="1111101111111111";

 elsif(TX_RX="011100") then

 sp4t<="0111";

 sp16t<="1111011111111111";

 elsif(TX_RX="011101") then

 sp4t<="0111";

Synthetic Aperture Radar ECE Team 11 Spring 2016

B-51

 sp16t<="1110111111111111";

 elsif(TX_RX="011110") then

 sp4t<="0111";

 sp16t<="1101111111111111";

 elsif(TX_RX="011111") then

 sp4t<="0111";

 sp16t<="1011111111111111";

 elsif(TX_RX="100000") then

 sp4t<="0111";

 sp16t<="0111111111111111";

 else null;

 end if;

end if;

end process;

end Behavioral;

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-1

Appendix C: MATLAB Code Modules

C.1 FAST FOURIER TRANSFORM MODULE

function ffasf = sarFFT(I,Q)
th = [-0.157079633 -0.136135682 -0.115191731 -0.09424778 -0.073303829 -0.052359878

-0.031415927 -0.010471976 0.010471976 0.031415927 0.052359878 0.073303829

0.09424778 0.115191731 0.136135682 0.157079633];
basis = [18.85*sin(th); 2*18.85*sin(th); 3*18.85*sin(th); 4*18.85*sin(th);

5*18.85*sin(th);6*18.85*sin(th);7*18.85*sin(th);8*18.85*sin(th);9*18.85*sin(th);10*

18.85*sin(th);11*18.85*sin(th);12*18.85*sin(th);13*18.85*sin(th);14*18.85*sin(th);1

5*18.85*sin(th);16*18.85*sin(th)];
freal = cos(basis);
fim = sin(basis);
cmplxRIQ1 = ((freal(1,:)*I(:,1)) - (fim(1,:)*Q(:,1)));
cmplxRIQ2 = ((freal(2,:)*I(:,2)) - (fim(2,:)*Q(:,2)));
cmplxRIQ3 = ((freal(3,:)*I(:,3)) - (fim(3,:)*Q(:,3)));
cmplxRIQ4 = ((freal(4,:)*I(:,4)) - (fim(4,:)*Q(:,4)));
cmplxRIQ5 = ((freal(5,:)*I(:,5)) - (fim(5,:)*Q(:,5)));
cmplxRIQ6 = ((freal(6,:)*I(:,6)) - (fim(6,:)*Q(:,6)));
cmplxRIQ7 = ((freal(7,:)*I(:,7)) - (fim(7,:)*Q(:,7)));
cmplxRIQ8 = ((freal(8,:)*I(:,8)) - (fim(8,:)*Q(:,8)));
cmplxRIQ9 = ((freal(9,:)*I(:,9)) - (fim(9,:)*Q(:,9)));
cmplxRIQ10 = ((freal(10,:)*I(:,10)) - (fim(10,:)*Q(:,10)));
cmplxRIQ11 = ((freal(11,:)*I(:,11)) - (fim(11,:)*Q(:,11)));
cmplxRIQ12 = ((freal(12,:)*I(:,12)) - (fim(12,:)*Q(:,12)));
cmplxRIQ13 = ((freal(13,:)*I(:,13)) - (fim(13,:)*Q(:,13)));
cmplxRIQ14 = ((freal(14,:)*I(:,14)) - (fim(14,:)*Q(:,14)));
cmplxRIQ15 = ((freal(15,:)*I(:,15)) - (fim(15,:)*Q(:,15)));
cmplxRIQ16 = ((freal(16,:)*I(:,16)) - (fim(16,:)*Q(:,16)));
cmplxImIQ1 = ((freal(1,:)*Q(:,1)) + (fim(1,:)*I(:,1)));
cmplxImIQ2 = ((freal(2,:)*Q(:,2)) + (fim(2,:)*I(:,2)));
cmplxImIQ3 = ((freal(3,:)*Q(:,3)) + (fim(3,:)*I(:,3)));
cmplxImIQ4 = ((freal(4,:)*Q(:,4)) + (fim(4,:)*I(:,4)));
cmplxImIQ5 = ((freal(5,:)*Q(:,5)) + (fim(5,:)*I(:,5)));
cmplxImIQ6 = ((freal(6,:)*Q(:,6)) + (fim(6,:)*I(:,6)));
cmplxImIQ7 = ((freal(7,:)*Q(:,7)) + (fim(7,:)*I(:,7)));
cmplxImIQ8 = ((freal(8,:)*Q(:,8)) + (fim(8,:)*I(:,8)));
cmplxImIQ9 = ((freal(9,:)*Q(:,9)) + (fim(9,:)*I(:,9)));
cmplxImIQ10 = ((freal(10,:)*Q(:,10)) + (fim(10,:)*I(:,10)));
cmplxImIQ11 = ((freal(11,:)*Q(:,11)) + (fim(11,:)*I(:,11)));
cmplxImIQ12 = ((freal(12,:)*Q(:,12)) + (fim(12,:)*I(:,12)));
cmplxImIQ13 = ((freal(13,:)*Q(:,13)) + (fim(13,:)*I(:,13)));
cmplxImIQ14 = ((freal(14,:)*Q(:,14)) + (fim(14,:)*I(:,14)));
cmplxImIQ15 = ((freal(15,:)*Q(:,15)) + (fim(15,:)*I(:,15)));
cmplxImIQ16 = ((freal(16,:)*Q(:,16)) + (fim(16,:)*I(:,16)));
realsum = cmplxRIQ1 + cmplxRIQ2 + cmplxRIQ3 + cmplxRIQ4 + cmplxRIQ5 + cmplxRIQ6 +

cmplxRIQ7 + cmplxRIQ8 + cmplxRIQ9 + cmplxRIQ10 + cmplxRIQ11 + cmplxRIQ12 +

cmplxRIQ13 + cmplxRIQ14 + cmplxRIQ15 + cmplxRIQ16;
rsumsq = (realsum).^(2);
imagsum = cmplxImIQ1 + cmplxImIQ2 + cmplxImIQ3 + cmplxImIQ4 + cmplxImIQ5 +

cmplxImIQ6 + cmplxImIQ7 + cmplxImIQ8 + cmplxImIQ9 + cmplxImIQ10 + cmplxImIQ11 +

cmplxImIQ12 + cmplxImIQ13 + cmplxImIQ14 + cmplxImIQ15 + cmplxImIQ16;
imsumsq = (imagsum).^(2);

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-2

ampl = [20*log10((rsumsq(:,1) + imsumsq(:,1)).^(0.5)); 20*log10((rsumsq(:,2) +

imsumsq(:,2)).^(0.5)); 20*log10((rsumsq(:,3) + imsumsq(:,3)).^(0.5));

20*log10((rsumsq(:,4) + imsumsq(:,4)).^(0.5)); 20*log10((rsumsq(:,5) +

imsumsq(:,5)).^(0.5)); 20*log10((rsumsq(:,6) + imsumsq(:,6)).^(0.5));

20*log10((rsumsq(:,7) + imsumsq(:,7)).^(0.5)); 20*log10((rsumsq(:,8) +

imsumsq(:,8)).^(0.5)); 20*log10((rsumsq(:,9) + imsumsq(:,9)).^(0.5));

20*log10((rsumsq(:,10) + imsumsq(:,10)).^(0.5)); 20*log10((rsumsq(:,11) +

imsumsq(:,11)).^(0.5)); 20*log10((rsumsq(:,12) + imsumsq(:,12)).^(0.5));

20*log10((rsumsq(:,13) + imsumsq(:,13)).^(0.5)); 20*log10((rsumsq(:,14) +

imsumsq(:,14)).^(0.5)); 20*log10((rsumsq(:,15) + imsumsq(:,15)).^(0.5));

20*log10((rsumsq(:,16) + imsumsq(:,16)).^(0.5))];
actres = ampl.^2;
thetainc = [-9; -7.8; -6.6; -5.4; -4.2; -3; -1.8; -0.6; 0.6; 1.8; 3; 4.2; 5.4; 6.6;

7.8; 9];
ffasf = [ampl thetainc];
plot(thetainc,ampl);
figure
bar(thetainc,ampl);
end

C.2 READING AND CONVERTING I AND Q DATA MODULES

function actual_dataI = readI(dat)
% Get 1st I value
check = 0;
Iarr1 = ((dat(2).*((16).^2)) + dat(1)); % Grabs Upper Byte and Lower Byte, Does

Computation
Ibarr1 = ((dat(34).*((16).^2)) + dat(33)); % Grabs UB and LB of Ibar for Negative
if Iarr1 ~= check % Checks if Positive From ADC logic
 Iv1 = (((Iarr1)./4095).*(3.3)); % Positive Normalization for MATLAB Computation
else % If Value is Negative (from Ibar Channel) From ADC Logic
 Iv1 = -(((Ibarr1)./4095).*(3.3)); % Negative Normalization for MATLAB

Computation
end

Iarr2 = ((dat(4).*((16).^2)) + dat(3));
Ibarr2 = ((dat(36).*((16).^2)) + dat(35));
if Iarr2 ~= check
 Iv2 = (((Iarr2)./4095).*(3.3));
else
 Iv2 = -(((Ibarr2)./4095).*(3.3));
end

Iarr3 = ((dat(6).*((16).^2)) + dat(5));
Ibarr3 = ((dat(38).*((16).^2)) + dat(37));
if Iarr3 ~= check
 Iv3 = (((Iarr3)./4095).*(3.3));
else
 Iv3 = -(((Ibarr3)./4095).*(3.3));
end

Iarr4 = ((dat(8).*((16).^2)) + dat(7));
Ibarr4 = ((dat(40).*((16).^2)) + dat(39));
if Iarr4 ~= check
 Iv4 = (((Iarr4)./4095).*(3.3));

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-3

else
 Iv4 = -(((Ibarr4)./4095).*(3.3));
end

Iarr5 = ((dat(10).*((16).^2)) + dat(9));
Ibarr5 = ((dat(42).*((16).^2)) + dat(41));
if Iarr5 ~= check
 Iv5 = (((Iarr5)./4095).*(3.3));
else
 Iv5 = -(((Ibarr5)./4095).*(3.3));
end

Iarr6 = ((dat(12).*((16).^2)) + dat(11));
Ibarr6 = ((dat(44).*((16).^2)) + dat(43));
if Iarr6 ~= check
 Iv6 = (((Iarr6)./4095).*(3.3));
else
 Iv6 = -(((Ibarr6)./4095).*(3.3));
end

Iarr7 = ((dat(14).*((16).^2)) + dat(13));
Ibarr7 = ((dat(46).*((16).^2)) + dat(45));
if Iarr7 ~= check
 Iv7 = (((Iarr7)./4095).*(3.3));
else
 Iv7 = -(((Ibarr7)./4095).*(3.3));
end

Iarr8 = ((dat(16).*((16).^2)) + dat(15));
Ibarr8 = ((dat(48).*((16).^2)) + dat(47));
if Iarr8 ~= check
 Iv8 = (((Iarr8)./4095).*(3.3));
else
 Iv8 = -(((Ibarr8)./4095).*(3.3));
end

Iarr9 = ((dat(18).*((16).^2)) + dat(17));
Ibarr9 = ((dat(50).*((16).^2)) + dat(49));
if Iarr9 ~= check
 Iv9 = (((Iarr9)./4095).*(3.3));
else
 Iv9 = -(((Ibarr9)./4095).*(3.3));
end

Iarr10 = ((dat(20).*((16).^2)) + dat(19));
Ibarr10 = ((dat(52).*((16).^2)) + dat(51));
if Iarr10 ~= check
 Iv10 = (((Iarr10)./4095).*(3.3));
else
 Iv10 = -(((Ibarr10)./4095).*(3.3));
end

Iarr11 = ((dat(22).*((16).^2)) + dat(21));
Ibarr11 = ((dat(54).*((16).^2)) + dat(53));
if Iarr11 ~= check

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-4

 Iv11 = (((Iarr11)./4095).*(3.3));
else
 Iv11 = -(((Ibarr11)./4095).*(3.3));
end

Iarr12 = ((dat(24).*((16).^2)) + dat(23));
Ibarr12 = ((dat(56).*((16).^2)) + dat(55));
if Iarr12 ~= check
 Iv12 = (((Iarr12)./4095).*(3.3));
else
 Iv12 = -(((Ibarr12)./4095).*(3.3));
end

Iarr13 = ((dat(26).*((16).^2)) + dat(25));
Ibarr13 = ((dat(58).*((16).^2)) + dat(57));
if Iarr13 ~= check
 Iv13 = (((Iarr13)./4095).*(3.3));
else
 Iv13 = -(((Ibarr13)./4095).*(3.3));
end

Iarr14 = ((dat(28).*((16).^2)) + dat(27));
Ibarr14 = ((dat(60).*((16).^2)) + dat(59));
if Iarr14 ~= check
 Iv14 = (((Iarr14)./4095).*(3.3));
else
 Iv14 = -(((Ibarr14)./4095).*(3.3));
end

Iarr15 = ((dat(30).*((16).^2)) + dat(29));
Ibarr15 = ((dat(62).*((16).^2)) + dat(61));
if Iarr15 ~= check
 Iv15 = (((Iarr15)./4095).*(3.3));
else
 Iv15 = -(((Ibarr15)./4095).*(3.3));
end

Iarr16 = ((dat(32).*((16).^2)) + dat(31));
Ibarr16 = ((dat(64).*((16).^2)) + dat(63));
if Iarr16 ~= check
 Iv16 = (((Iarr16)./4095).*(3.3));
else
 Iv16 = -(((Ibarr16)./4095).*(3.3));
end

actual_dataI = [Iv1 Iv2 Iv3 Iv4 Iv5 Iv6 Iv7 Iv8 Iv9 Iv10 Iv11 Iv12 Iv13 Iv14 Iv15

Iv16];
end

function actual_dataQ = readQ(dat)
% Get 1st Q value
check = 0;

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-5

Qarr1 = ((dat(66).*((16).^2)) + dat(65)); % Grabs Upper Byte and Lower Byte, Does

Computation
Qbarr1 = ((dat(98).*((16).^2)) + dat(97));
if Qarr1 ~= check % Checks if Positive From ADC logic
 Qv1 = (((Qarr1)./4095).*(3.3)); % Positive Normalization for MATLAB Computation
else % If Value ss Negative From ADC Logic
 Qv1 = -(((Qbarr1)./4095).*(3.3)); % Negative Normalization for MATLAB

Computation
end

Qarr2 = ((dat(68).*((16).^2)) + dat(67));
Qbarr2 = ((dat(100).*((16).^2)) + dat(99));
if Qarr2 ~= check
 Qv2 = (((Qarr2)./4095).*(3.3));
else
 Qv2 = -(((Qbarr2)./4095).*(3.3));
end

Qarr3 = ((dat(70).*((16).^2)) + dat(69));
Qbarr3 = ((dat(102).*((16).^2)) + dat(101));
if Qarr3 ~= check
 Qv3 = (((Qarr3)./4095).*(3.3));
else
 Qv3 = -(((Qbarr3)./4095).*(3.3));
end

Qarr4 = ((dat(72).*((16).^2)) + dat(71));
Qbarr4 = ((dat(104).*((16).^2)) + dat(103));
if Qarr4 ~= check
 Qv4 = (((Qarr4)./4095).*(3.3));
else
 Qv4 = -(((Qbarr4)./4095).*(3.3));
end

Qarr5 = ((dat(74).*((16).^2)) + dat(73));
Qbarr5 = ((dat(106).*((16).^2)) + dat(105));
if Qarr5 ~= check
 Qv5 = (((Qarr5)./4095).*(3.3));
else
 Qv5 = -(((Qbarr5)./4095).*(3.3));
end

Qarr6 = ((dat(76).*((16).^2)) + dat(75));
Qbarr6 = ((dat(108).*((16).^2)) + dat(107));
if Qarr6 ~= check
 Qv6 = (((Qarr6)./4095).*(3.3));
else
 Qv6 = -(((Qbarr6)./4095).*(3.3));
end

Qarr7 = ((dat(78).*((16).^2)) + dat(77));
Qbarr7 = ((dat(110).*((16).^2)) + dat(109));
if Qarr7 ~= check
 Qv7 = (((Qarr7)./4095).*(3.3));
else
 Qv7 = -(((Qbarr7)./4095).*(3.3));

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-6

end

Qarr8 = ((dat(80).*((16).^2)) + dat(79));
Qbarr8 = ((dat(112).*((16).^2)) + dat(111));
if Qarr8 ~= check
 Qv8 = (((Qarr8)./4095).*(3.3));
else
 Qv8 = -(((Qbarr8)./4095).*(3.3));
end

Qarr9 = ((dat(82).*((16).^2)) + dat(81));
Qbarr9 = ((dat(114).*((16).^2)) + dat(113));
if Qarr9 ~= check
 Qv9 = (((Qarr9)./4095).*(3.3));
else
 Qv9 = -(((Qbarr9)./4095).*(3.3));
end

Qarr10 = ((dat(84).*((16).^2)) + dat(83));
Qbarr10 = ((dat(116).*((16).^2)) + dat(115));
if Qarr10 ~= check
 Qv10 = (((Qarr10)./4095).*(3.3));
else
 Qv10 = -(((Qbarr10)./4095).*(3.3));
end

Qarr11 = ((dat(86).*((16).^2)) + dat(85));
Qbarr11 = ((dat(118).*((16).^2)) + dat(117));
if Qarr11 ~= check
 Qv11 = (((Qarr11)./4095).*(3.3));
else
 Qv11 = -(((Qbarr11)./4095).*(3.3));
end

Qarr12 = ((dat(88).*((16).^2)) + dat(87));
Qbarr12 = ((dat(120).*((16).^2)) + dat(119));
if Qarr12 ~= check
 Qv12 = (((Qarr12)./4095).*(3.3));
else
 Qv12 = -(((Qbarr12)./4095).*(3.3));
end

Qarr13 = ((dat(90).*((16).^2)) + dat(89));
Qbarr13 = ((dat(122).*((16).^2)) + dat(121));
if Qarr13 ~= check
 Qv13 = (((Qarr13)./4095).*(3.3));
else
 Qv13 = -(((Qbarr13)./4095).*(3.3));
end

Qarr14 = ((dat(92).*((16).^2)) + dat(91));
Qbarr14 = ((dat(124).*((16).^2)) + dat(123));
if Qarr14 ~= check
 Qv14 = (((Qarr14)./4095).*(3.3));
else

Synthetic Aperture Radar ECE Team 11 Spring 2016

C-7

 Qv14 = -(((Qbarr14)./4095).*(3.3));
end

Qarr15 = ((dat(94).*((16).^2)) + dat(93));
Qbarr15 = ((dat(126).*((16).^2)) + dat(125));
if Qarr15 ~= check
 Qv15 = (((Qarr15)./4095).*(3.3));
else
 Qv15 = -(((Qbarr15)./4095).*(3.3));
end

Qarr16 = ((dat(96).*((16).^2)) + dat(95));
Qbarr16 = ((dat(128).*((16).^2)) + dat(127));
if Qarr16 ~= check
 Qv16 = (((Qarr16)./4095).*(3.3));
else
 Qv16 = -(((Qbarr16)./4095).*(3.3));
end

actual_dataQ = [Qv1 Qv2 Qv3 Qv4 Qv5 Qv6 Qv7 Qv8 Qv9 Qv10 Qv11 Qv12 Qv13 Qv14 Qv15

Qv16];
end

C.3 CALIBRATION CODE MODULES

function correctedQ = calibrationQ(Qval)
correctedQ = -Qval;
end

function correctedI = calibrationI(Ival)
correctedI = Ival;
end

